本程序参考了3篇电力系统TOP-EI期刊,将目前的热点研究数据驱动结合综合综合能源系统,利用分布鲁棒处理不确定性问题,程序中算例丰富,注释清晰,干货满满,小编非常推荐这个程序,下面对程序代码详细介绍!
参考文献:
1. 中国电机工程学报:计及需求响应柔性调节的分布鲁棒 DG 优化配置
2. 电力系统自动化:基于场景聚类的主动配电网分布鲁棒综合优化
3. 电网技术:基于数据驱动的交直流配电网分布鲁棒优化调度
论文亮点:
1. 通过基于多面体的线性化技巧和McCormick方法,将原始混合整数非线性模型线性化,建立混合整数线性规划模型;然后,充分利用需求响应和新能源出力的历史数据,构建数据驱动的两阶段分布鲁棒新能源优化配置模型,其中第一阶段确定新能源的投资方案,第二阶段模拟投入新能源后的系统运行, 并同时考虑不确定性概率分布置信集合的1-范数和∞-范数约束;
2. 在考虑新能源间相关性的基础上,基于原始数据采用拉丁超立方采样得到初始场景,利用手肘法确定K-means算法的聚类数,从而得到典型场景,场景分布的概率置信区间由1-范数和∞-范数约束。
3. 通过二阶锥松弛和McCormick线性化方法,将原始混合整数非线性模型(MINLP)转化为混合整数二阶锥凸优化模型(MISOCP);然后,结合风光和负荷的典型历史数据以及决策变量的调节特性,构建数据驱动的两阶段分布鲁棒优化调度模型,并综合1-范数和∞-范数同时约束不确定性概率分布置信集合;
第一阶段目标函数:一阶段目标是微燃机启停成本
第二阶段目标函数:分别是电网购电成本、发电机运行成本、蓄电池老化成本(或者运维)、弃风和弃光成本。
程序结果:
部分程序:
clc;clear all
tic
ps0=[22.7; 15.6; 38.05; 23.65]'./100;%场景概率
ps=ps0;
alfa1=0.99;alfaw=0.99;N=5000;
theta1=4/N/2*log(2*4/(1-alfa1));%公式46-47
thetaw=1/N/2*log(2*4/(1-alfaw));
tn=24;%时序性参数
Pgmax=300;ru=50;rd=50;%微燃机最大出力,爬坡约束 原pgmax=100
Sch=400;Pchmax=0.2*Sch;ee0=0.5*Sch;socmax=0.9;socmin=0.1;
eta=0.95;%储能充放电效率
cg=1.7;%MTG运行成本
cq=0.62;%弃风弃光成本
ccn=0.3*7/100;%储能老化成本 原/1000
cqt=0.25;%启停成本
d2h=1.2;%电热比
yitagl=0.9;%电锅炉
UB=inf;
LB=-inf;
for k=1:4
% while UB-LB>1
MP427;
LB=obj_mp;
LB1(k)=LB;
SP427;
UB=min([UB,UB1]);
UB2(k)=UB;
end
P_qw=p0_wt-p_wt;
P_qv=p0_pv-p_pv;
toc
disp(['运行时间: ',num2str(toc)]);
欢迎感兴趣的小伙伴关注下方公众号获取完整版代码,小编会继续推送更有质量的学习资料、文章和程序代码,为您的科研加油助力!