时间序列预测实战(二十四)PyTorch实现RNN进行多元和单元预测(附代码+数据集+完整解析)

     


一、本文介绍

本篇文章给大家带来的是利用我个人编写的架构进行RNN时间序列卷积进行时间序列建模(专门为了时间序列领域新人编写的架构,简单且不同于市面上大家用GPT写的代码),包括结果可视化、支持单元预测、多元预测、模型拟合效果检测、预测未知数据、以及滚动长期预测功能该结构是一个通用架构任何模型嵌入其中都可运行。下面来介绍一下RNN:循环神经网络(RNN)是深度学习中用于处理序列数据的一种基本网络结构。RNN的核心原理是它拥有一个循环结构这使得网络能够保持一个内部的状态,从而捕捉到数据中随时间演变的信息。在RNN中,每个节点(或称为单元)在处理当前输入的同时,也会考虑前一时间步的隐藏状态。这种结构让RNN能够在时间序列分析、语言模型、文本生成等任务中建模数据中的时序依赖性,所以它可以用于时序预测,但是因为其存在导致梯度爆炸或者梯度消失的问题所以后来引出了LSTM,GRU等RNN模型。

  专栏目录:时间序列预测目录:深度学习、机器学习、融合模型、创新模型实战案例

专栏: 时间序列预测专栏:基础知识+数据分析+机器学习+深度学习+Transformer+创新模型

预测功能效果展示(不是测试集是预测未知数据,所以图中没有对比的数据)->

损失截图(损失这里我先展示一个训练过程中的后面会自动生成损失图像)-> 

根据损失来看模型的拟合效果还是很好的,但后面还是做了检验模型拟合效果的功能让大家真正的评估模型的效果。

测试集状况->

(从下面的图片可以看出模型在测试集的效果还可以,毕竟只是单一的RNN结构,为啥发单一因为我发现发高端或者融合的根本没人看) 

目录

一、本文介绍

二、RNN的框架原理

三、数据集介绍

四、参数讲解 

五、完整代码

六、训练模型 

七、预测结果

7.1 预测未知数据效果图

7.2 测试集效果图 

7.3 CSV文件生成效果图 

7.4 检验模型拟合效果图

八、全文总结


二、RNN的框架原理

循环神经网络(RNN)是一种专门用于处理序列数据的神经网络。它的主要思想是在处理序列的每个元素时,网络不仅考虑当前输入,还会考虑之前的信息。这使得RNN非常适合处理时间序列数据、语言模型等任务。

RNN的工作机制主要包括以下几点:

  1. 隐藏状态: RNN维护一个隐藏状态,它捕获到目前为止处理过的信息。
  2. 序列处理: 在处理序列的每个时间步时,RNN会更新其隐藏状态。
  3. 权重共享: 在不同时间步,RNN使用相同的权重,这减少了模型的复杂性并提高了训练效率。
  4. 输出: 根据任务的不同,RNN可以在每个时间步产生输出,或者仅在最后一个时间步产生输出。

总结来说,RNN之所以强大,是因为它能够利用序列数据的时间依赖性,通过维护一个在时间步之间传递的隐藏状态来实现这一点。这种结构使得RNN在处理诸如文本、语音等序列数据方面表现出色。然而,RNN也存在一定的局限性,比如难以处理长序列中的长期依赖问题,这通常通过引入LSTM或GRU等变体来解决。

下面的链接里包含了RNN系列的完整发展流程大家有兴趣的可以看看->

RNN发展流程:点击即可跳转

下面分享给大家两个LSTM和GRU的原理图吧,RNN实在没啥好说的,主要不发这些经典的文章还没人看。 

LSTM结构图-> 

GRU结构图-> 


三、数据集介绍

本文是实战讲解文章,上面主要是简单讲解了一下网络结构比较具体的流程还是很复杂的涉及到很多的数学计算,下面我们来讲一讲模型的实战内容,第一部分是我利用的数据集。

本文我们用到的数据集是ETTh1.csv该数据集是一个用于时间序列预测的电力负荷数据集,它是 ETTh 数据集系列中的一个。ETTh 数据集系列通常用于测试和评估时间序列预测模型。以下是 ETTh1.csv 数据集的一些内容:

数据内容:该数据集通常包含有关电力系统的多种变量,如电力负荷、价格、天气情况等。这些变量可以用于预测未来的电力需求或价格。

时间范围和分辨率数据通常按小时或天记录,涵盖了数月或数年的时间跨度。具体的时间范围和分辨率可能会根据数据集的版本而异。 

以下是该数据集的部分截图->


四、参数讲解 


    parser.add_argument('-model', type=str, default='RNN', help="模型持续更新")
    parser.add_argument('-window_size', type=int, default=126, help="时间窗口大小, window_size > pre_len")
    parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")
    # data
    parser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")
    parser.add_argument('-data_path', type=str, default='ETTh1-Test.csv', help="你的数据数据地址")
    parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')
    parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')
    parser.add_argument('-feature', type=str, default='M', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')

    # learning
    parser.add_argument('-lr', type=float, default=0.001, help="学习率")
    parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")
    parser.add_argument('-epochs', type=int, default=20, help="训练轮次")
    parser.add_argument('-batch_size', type=int, default=16, help="批次大小")
    parser.add_argument('-save_path', type=str, default='models')

    # model
    parser.add_argument('-hidden_size', type=int, default=64, help="隐藏层单元数")
    parser.add_argument('-kernel_sizes', type=int, default=3)
    parser.add_argument('-laryer_num', type=int, default=2)
    # device
    parser.add_argument('-use_gpu', type=bool, default=True)
    parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")

    # option
    parser.add_argument('-train', type=bool, default=True)
    parser.add_argument('-test', type=bool, default=True)
    parser.add_argument('-predict', type=bool, default=True)
    parser.add_argument('-inspect_fit', type=bool, default=True)
    parser.add_argument('-lr-scheduler', type=bool, default=True)

为了大家方便理解,文章中的参数设置我都用的中文,所以大家应该能够更好的理解。下面我在进行一遍讲解。 

参数名称参数类型参数讲解
1modelstr模型名称
2window_sizeint时间窗口大小,用多少条数据去预测未来的数据

3

pre_lenint预测多少条未来的数据
4shufflestore_true是否打乱输入dataloader中的数据,不是数据的顺序

5

data_pathstr你输入数据的地址
6targetstr你想要预测的特征列

7

input_sizeint输入的特征数不包含时间那一列!!!

8

featurestr[M, S, MS],多元预测多元,单元预测单元,多元预测单元
9lrfloat学习率大小

10

drop_out

float丢弃概率
11epochsint训练轮次

12

batch_sizeint批次大小
13svae_pathstr模型的保存路径

14

hidden_sizeint隐藏层大小
15kernel_sizeint卷积核大小

16

layer_numintlstm层数
17use_gpubool是否使用GPU

18

deviceintGPU编号
19trainbool是否进行训练

20

predictbool是否进行预测

21

inspect_fitbool是否进行检验模型
22lr_schdulerbool是否使用学习率计划


五、完整代码

复制粘贴到一个文件下并且按照上面的从参数讲解配置好参数即可运行~(极其适合新手和刚入门的读者)

import argparse
import time

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from torch.nn.utils import weight_norm
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tqdm import tqdm

# 随机数种子
np.random.seed(0)


class StandardScaler():
    def __init__(self):
        self.mean = 0.
        self.std = 1.

    def fit(self, data):
        self.mean = data.mean(0)
        self.std = data.std(0)

    def transform(self, data):
        mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
        std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
        return (data - mean) / std

    def inverse_transform(self, data):
        mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
        std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
        if data.shape[-1] != mean.shape[-1]:
            mean = mean[-1:]
            std = std[-1:]
        return (data * std) + mean


def plot_loss_data(data):
    # 使用Matplotlib绘制线图
    plt.figure()
    plt.figure(figsize=(10, 5))
    plt.plot(data, marker='o')

    # 添加标题
    plt.title("loss results Plot")

    # 显示图例
    plt.legend(["Loss"])

    plt.show()


class TimeSeriesDataset(Dataset):
    def __init__(self, sequences):
        self.sequences = sequences

    def __len__(self):
        return len(self.sequences)

    def __getitem__(self, index):
        sequence, label = self.sequences[index]
        return torch.Tensor(sequence), torch.Tensor(label)


def create_inout_sequences(input_data, tw, pre_len, config):
    # 创建时间序列数据专用的数据分割器
    inout_seq = []
    L = len(input_data)
    for i in range(L - tw):
        train_seq = input_data[i:i + tw]
        if (i + tw + pre_len) > len(input_data):
            break
        if config.feature == 'MS':
            train_label = input_data[:, -1:][i + tw:i + tw + pre_len]
        else:
            train_label = input_data[i + tw:i + tw + pre_len]
        inout_seq.append((train_seq, train_label))
    return inout_seq


def calculate_mae(y_true, y_pred):
    # 平均绝对误差
    mae = np.mean(np.abs(y_true - y_pred))
    return mae


def create_dataloader(config, device):
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<")
    df = pd.read_csv(config.data_path)  # 填你自己的数据地址,自动选取你最后一列数据为特征列 # 添加你想要预测的特征列
    pre_len = config.pre_len  # 预测未来数据的长度
    train_window = config.window_size  # 观测窗口

    # 将特征列移到末尾
    target_data = df[[config.target]]
    df = df.drop(config.target, axis=1)
    df = pd.concat((df, target_data), axis=1)

    cols_data = df.columns[1:]
    df_data = df[cols_data]

    # 这里加一些数据的预处理, 最后需要的格式是pd.series
    true_data = df_data.values

    # 定义标准化优化器
    # 定义标准化优化器
    scaler = StandardScaler()
    scaler.fit(true_data)

    train_data = true_data[int(0.3 * len(true_data)):]
    valid_data = true_data[int(0.15 * len(true_data)):int(0.30 * len(true_data))]
    test_data = true_data[:int(0.15 * len(true_data))]
    print("训练集尺寸:", len(train_data), "测试集尺寸:", len(test_data), "验证集尺寸:", len(valid_data))

    # 进行标准化处理
    train_data_normalized = scaler.transform(train_data)
    test_data_normalized = scaler.transform(test_data)
    valid_data_normalized = scaler.transform(valid_data)

    # 转化为深度学习模型需要的类型Tensor
    train_data_normalized = torch.FloatTensor(train_data_normalized).to(device)
    test_data_normalized = torch.FloatTensor(test_data_normalized).to(device)
    valid_data_normalized = torch.FloatTensor(valid_data_normalized).to(device)

    # 定义训练器的的输入
    train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len, config)
    test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len, config)
    valid_inout_seq = create_inout_sequences(valid_data_normalized, train_window, pre_len, config)

    # 创建数据集
    train_dataset = TimeSeriesDataset(train_inout_seq)
    test_dataset = TimeSeriesDataset(test_inout_seq)
    valid_dataset = TimeSeriesDataset(valid_inout_seq)

    # 创建 DataLoader
    train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)
    valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, drop_last=True)

    print("通过滑动窗口共有训练集数据:", len(train_inout_seq), "转化为批次数据:", len(train_loader))
    print("通过滑动窗口共有测试集数据:", len(test_inout_seq), "转化为批次数据:", len(test_loader))
    print("通过滑动窗口共有验证集数据:", len(valid_inout_seq), "转化为批次数据:", len(valid_loader))
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>创建数据加载器完成<<<<<<<<<<<<<<<<<<<<<<<<<<<")
    return train_loader, test_loader, valid_loader, scaler


class RNNs(nn.Module):
    """Model class to declare an rnn and define a forward pass of the model."""

    def __init__(self, input_size, output_size, hidden_size, num_layers, pred_len):

        """
         'rnn'
        """
        # inherit the nn.Module class via 'super'
        super(RNNs, self).__init__()

        # store stuff in the class
        self.pre_len = pred_len
        self.n_layers = num_layers
        self.hidden_size = hidden_size
        self.hidden = nn.Linear(input_size, self.hidden_size)
        self.relu = nn.ReLU()
        self.rnn = nn.RNN(self.hidden_size, self.hidden_size, num_layers, bias=True, batch_first=True)  # output (batch_size, obs_len, hidden_size)
        self.linear = nn.Linear(self.hidden_size, output_size)

    def forward(self, x):
        # rnn module expects data of shape [seq, batch_size, input_size]
        batch_size, obs_len, features_size = x.shape  # (batch_size, obs_len, features_size)
        xconcat = self.hidden(x)  # (batch_size, obs_len, hidden_size)
        H = torch.zeros(batch_size, obs_len - 1, self.hidden_size).to(device)  # (batch_size, obs_len-1, hidden_size)
        ht = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(
            device)  # (num_layers, batch_size, hidden_size)
        for t in range(obs_len):
            xt = xconcat[:, t, :].view(batch_size, 1, -1)  # (batch_size, 1, hidden_size)
            out, ht = self.rnn(xt, ht)  # ht size (num_layers, batch_size, hidden_size)
            htt = ht[-1, :, :]  # (batch_size, hidden_size)
            if t != obs_len - 1:
                H[:, t, :] = htt
        H = self.relu(H)  # (batch_size, obs_len-1, hidden_size)
        x = self.linear(H)
        return x[:, -self.pre_len:, :]



def train(model, args, scaler, device):
    start_time = time.time()  # 计算起始时间
    model = model
    loss_function = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
    epochs = args.epochs
    model.train()  # 训练模式
    results_loss = []
    for i in tqdm(range(epochs)):
        losss = []
        for seq, labels in train_loader:
            optimizer.zero_grad()

            y_pred = model(seq)

            single_loss = loss_function(y_pred, labels)

            single_loss.backward()

            optimizer.step()
            losss.append(single_loss.detach().cpu().numpy())
        tqdm.write(f"\t Epoch {i + 1} / {epochs}, Loss: {sum(losss) / len(losss)}")
        results_loss.append(sum(losss) / len(losss))


        torch.save(model.state_dict(), 'save_model.pth')
        time.sleep(0.1)

    # valid_loss = valid(model, args, scaler, valid_loader)
    # 尚未引入学习率计划后期补上
    # 保存模型

    print(f">>>>>>>>>>>>>>>>>>>>>>模型已保存,用时:{(time.time() - start_time) / 60:.4f} min<<<<<<<<<<<<<<<<<<")
    plot_loss_data(results_loss)


def valid(model, args, scaler, valid_loader):
    lstm_model = model
    # 加载模型进行预测
    lstm_model.load_state_dict(torch.load('save_model.pth'))
    lstm_model.eval()  # 评估模式
    losss = []

    for seq, labels in valid_loader:
        pred = lstm_model(seq)
        mae = calculate_mae(pred.detach().numpy().cpu(), np.array(labels.detach().cpu()))  # MAE误差计算绝对值(预测值  - 真实值)
        losss.append(mae)

    print("验证集误差MAE:", losss)
    return sum(losss) / len(losss)


def test(model, args, test_loader, scaler):
    # 加载模型进行预测
    losss = []
    model = model
    model.load_state_dict(torch.load('save_model.pth'))
    model.eval()  # 评估模式
    results = []
    labels = []
    for seq, label in test_loader:
        pred = model(seq)
        mae = calculate_mae(pred.detach().cpu().numpy(),
                            np.array(label.detach().cpu()))  # MAE误差计算绝对值(预测值  - 真实值)
        losss.append(mae)
        pred = pred[:, 0, :]
        label = label[:, 0, :]
        pred = scaler.inverse_transform(pred.detach().cpu().numpy())
        label = scaler.inverse_transform(label.detach().cpu().numpy())
        for i in range(len(pred)):
            results.append(pred[i][-1])
            labels.append(label[i][-1])
    plt.figure(figsize=(10, 5))
    print("测试集误差MAE:", losss)
    # 绘制历史数据
    plt.plot(labels, label='TrueValue')

    # 绘制预测数据
    # 注意这里预测数据的起始x坐标是历史数据的最后一个点的x坐标
    plt.plot(results, label='Prediction')

    # 添加标题和图例
    plt.title("test state")
    plt.legend()
    plt.show()


# 检验模型拟合情况
def inspect_model_fit(model, args, train_loader, scaler):
    model = model
    model.load_state_dict(torch.load('save_model.pth'))
    model.eval()  # 评估模式
    results = []
    labels = []

    for seq, label in train_loader:
        pred = model(seq)[:, 0, :]
        label = label[:, 0, :]
        pred = scaler.inverse_transform(pred.detach().cpu().numpy())
        label = scaler.inverse_transform(label.detach().cpu().numpy())
        for i in range(len(pred)):
            results.append(pred[i][-1])
            labels.append(label[i][-1])
    plt.figure(figsize=(10, 5))
    # 绘制历史数据
    plt.plot(labels, label='History')

    # 绘制预测数据
    # 注意这里预测数据的起始x坐标是历史数据的最后一个点的x坐标
    plt.plot(results, label='Prediction')

    # 添加标题和图例
    plt.title("inspect model fit state")
    plt.legend()
    plt.show()


def predict(model, args, device, scaler):
    # 预测未知数据的功能
    df = pd.read_csv(args.data_path)
    df = df.iloc[:, 1:][-args.window_size:].values  # 转换为nadarry
    pre_data = scaler.transform(df)
    tensor_pred = torch.FloatTensor(pre_data).to(device)
    tensor_pred = tensor_pred.unsqueeze(0)  # 单次预测 , 滚动预测功能暂未开发后期补上
    model = model
    model.load_state_dict(torch.load('save_model.pth'))
    model.eval()  # 评估模式

    pred = model(tensor_pred)[0]

    pred = scaler.inverse_transform(pred.detach().cpu().numpy())

    # 假设 df 和 pred 是你的历史和预测数据

    # 计算历史数据的长度
    history_length = len(df[:, -1])

    # 为历史数据生成x轴坐标
    history_x = range(history_length)
    plt.figure(figsize=(10, 5))
    # 为预测数据生成x轴坐标
    # 开始于历史数据的最后一个点的x坐标
    prediction_x = range(history_length - 1, history_length + len(pred[:, -1]) - 1)

    # 绘制历史数据
    plt.plot(history_x, df[:, -1], label='History')

    # 绘制预测数据
    # 注意这里预测数据的起始x坐标是历史数据的最后一个点的x坐标
    plt.plot(prediction_x, pred[:, -1], marker='o', label='Prediction')
    plt.axvline(history_length - 1, color='red')  # 在图像的x位置处画一条红色竖线
    # 添加标题和图例
    plt.title("History and Prediction")
    plt.legend()


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Time Series forecast')
    parser.add_argument('-model', type=str, default='RNN', help="模型持续更新")
    parser.add_argument('-window_size', type=int, default=126, help="时间窗口大小, window_size > pre_len")
    parser.add_argument('-pre_len', type=int, default=24, help="预测未来数据长度")
    # data
    parser.add_argument('-shuffle', action='store_true', default=True, help="是否打乱数据加载器中的数据顺序")
    parser.add_argument('-data_path', type=str, default='ETTh1-Test.csv', help="你的数据数据地址")
    parser.add_argument('-target', type=str, default='OT', help='你需要预测的特征列,这个值会最后保存在csv文件里')
    parser.add_argument('-input_size', type=int, default=7, help='你的特征个数不算时间那一列')
    parser.add_argument('-feature', type=str, default='MS', help='[M, S, MS],多元预测多元,单元预测单元,多元预测单元')
    parser.add_argument('-model_dim', type=list, default=[64, 128, 256], help='这个地方是这个TCN卷积的关键部分,它代表了TCN的层数我这里输'
                                                                              '入list中包含三个元素那么我的TCN就是三层,这个根据你的数据复杂度来设置'
                                                                              '层数越多对应数据越复杂但是不要超过5层')

    # learning
    parser.add_argument('-lr', type=float, default=0.001, help="学习率")
    parser.add_argument('-drop_out', type=float, default=0.05, help="随机丢弃概率,防止过拟合")
    parser.add_argument('-epochs', type=int, default=20, help="训练轮次")
    parser.add_argument('-batch_size', type=int, default=16, help="批次大小")
    parser.add_argument('-save_path', type=str, default='models')

    # model
    parser.add_argument('-hidden_size', type=int, default=128, help="隐藏层单元数")
    parser.add_argument('-kernel_sizes', type=int, default=3)
    parser.add_argument('-laryer_num', type=int, default=2)
    # device
    parser.add_argument('-use_gpu', type=bool, default=True)
    parser.add_argument('-device', type=int, default=0, help="只设置最多支持单个gpu训练")

    # option
    parser.add_argument('-train', type=bool, default=True)
    parser.add_argument('-test', type=bool, default=True)
    parser.add_argument('-predict', type=bool, default=True)
    parser.add_argument('-inspect_fit', type=bool, default=True)
    parser.add_argument('-lr-scheduler', type=bool, default=True)
    args = parser.parse_args()

    if isinstance(args.device, int) and args.use_gpu:
        device = torch.device("cuda:" + f'{args.device}')
    else:
        device = torch.device("cpu")
    print("使用设备:", device)
    train_loader, test_loader, valid_loader, scaler = create_dataloader(args, device)

    if args.feature == 'MS' or args.feature == 'S':
        args.output_size = 1
    else:
        args.output_size = args.input_size

    # 实例化模型
    try:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        model = RNNs(args.input_size, args.output_size, args.hidden_size, args.laryer_num, args.pre_len).to(device)
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型成功<<<<<<<<<<<<<<<<<<<<<<<<<<<")
    except:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始初始化{args.model}模型失败<<<<<<<<<<<<<<<<<<<<<<<<<<<")

    # 训练模型
    if args.train:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始{args.model}模型训练<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        train(model, args, scaler, device)
    if args.test:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始{args.model}模型测试<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        test(model, args, test_loader, scaler)
    if args.inspect_fit:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>开始检验{args.model}模型拟合情况<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        inspect_model_fit(model, args, train_loader, scaler)
    if args.predict:
        print(f">>>>>>>>>>>>>>>>>>>>>>>>>预测未来{args.pre_len}条数据<<<<<<<<<<<<<<<<<<<<<<<<<<<")
        predict(model, args, device, scaler)
    plt.show()


六、训练模型 

我们配置好所有参数之后就可以开始训练模型了,根据我前面讲解的参数部分进行配置,不懂得可以评论区留言。


七、预测结果

7.1 预测未知数据效果图

RNN的预测效果图(这里我只预测了未来24个时间段的值为未来一天的预测值)->


7.2 测试集效果图 

测试集上的表现->


7.3 CSV文件生成效果图 

同时我也可以将输出结果用csv文件保存,但是功能还没有做,我在另一篇informer的文章里实习了这个功能大家如果有需要可以评论区留言,有时间我会移植过来,最近一直在搞图像领域的文章因为时间序列看的人还是太少了。

另一篇文章链接->时间序列预测实战(十九)魔改Informer模型进行滚动长期预测(科研版本,结果可视化)

将滚动预测结果生成了csv文件方便大家对比和评估,以下是我生成的csv文件可以说是非常的直观。

 我们可以利用其进行画图从而评估结果-> 


7.4 检验模型拟合效果图

检验模型拟合情况->

(从下面的图片可以看出模型拟合的情况很好,估计是我发这么多里面拟合效果最好的了) 


八、全文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的时间序列专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的模型进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~)如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾: 时间序列预测专栏——持续复习各种顶会内容——科研必备

如果大家有不懂的也可以评论区留言一些报错什么的大家可以讨论讨论看到我也会给大家解答如何解决!最后希望大家工作顺利学业有成!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/235376.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Python必做100题】之第四题(判断素数)

素数&#xff1a;约数只有1和本身的数叫素数 代码如下&#xff1a; a int(input("请随机输入一个数字&#xff1a;")) #键盘随机输入一个数字进行判断 flag False for i in range(2,a):if a % i 0: #在(2&#xff0c;a-1)之间但凡有一个可以整除就不是素数break…

MyBatis进阶之分页和延迟加载

文章目录 分页1. RowBounds 分页2. PageHelper 分页3. PageInfo 对象属性描述 延迟加载立即加载激进式延迟加载真-延迟加载 分页 Mybatis 中实现分页功能有 3 种途径&#xff1a; RowBounds 分页&#xff08;不建议使用&#xff09;Example 分页&#xff08;简单情况可用)Pag…

一个适用于搭建企业内部培训平台的开源系统

大家好&#xff0c;我是 Java陈序员。 问君能有几多愁&#xff0c;唯有开源项目解千愁&#xff01; 最近领导给了个任务&#xff0c;搭建一个企业内部培训平台&#xff01;好不容易刚完成上个任务&#xff0c;又来一个活&#xff0c;这不又得加班了&#xff01; 还好&#x…

Oracle(2-14)User-Managed Incomplete Recovery

文章目录 一、基础知识1、Incomplete Recovery Overview 不完全恢复概述2、Situations Requiring IR 需要不完全恢复的情况3、Types of IR 不完全恢复的类型4、IR Guidelines 不完全恢复指南5、User-Managed Procedures 用户管理程序6、RECOVER Command Overview 恢复命令概述7…

基于Java的高校教学业绩信息管理系统论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本高校教学业绩信息管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的…

使用Git进行版本控制

参考&#xff1a;《Python编程从入门到实践》 前言1、安装、配置 Git1.1 在Linux系统中安装Git1.2 在OS X系统中安装Git1.3 在Windows系统中安装Git1.4 配置Git 2、创建项目3、忽略文件4、初始化仓库5、检查状态6、将文件加入到仓库中7、执行提交8、查看提交历史 前言 版本控制…

GridBagLayout GridBagConstraints 笔记231130

实例化使用模板 GridBagLayout gbl new GridBagLayout(); // gbl.columnWidths new int[]{200,200,200}; // 用数组设置列 // gbl.rowHeights new int[]{100,100,100,100,100}; // 用数组设置行GridBagConstraints gbc new GridBagConstraints();/*** gridBagConstrain…

2023,还不知道什么是iPaaS的企业要亏大了!

iPaaS是一种基于云的工具&#xff0c;用于将现有的应用程序和数据流链接到新的服务当中。本文就来介绍关于iPaaS的诞生历程和优势。 2023年&#xff0c;还不知道iPaaS是什么的企业亏大了&#xff01; iPaaS是什么 iPaaS是Intergration Platform as a Service&#xff08;集成平…

经典目标检测YOLO系列(一)引言_目标检测架构

经典目标检测YOLO系列(一)引言_目标检测架构 一个常见的目标检测网络&#xff0c;其本身往往可以分为一下三大块&#xff1a; Backbone network&#xff0c;即主干网络&#xff0c;是目标检测网络最为核心的部分&#xff0c;backbone选择的好坏&#xff0c;对检测性能影响是十…

阿里云服务器租用价格分享,阿里云服务器热门配置最新活动价格汇总

在我们购买阿里云服务器的时候&#xff0c;1核2G、2核2G、2核4G、2核8G、4核8G、8核16G、8核32G等配置属于用户购买最多的热门配置&#xff0c;1核2G、2核2G、2核4G这些配置低一点的云服务器基本上能够满足绝大部分个人建站和普通企业用户建站需求&#xff0c;而4核8G、8核16G、…

html通过CDN引入Vue使用Vuex以及Computed、Watch监听

html通过CDN引入Vue使用Vuex以及Computed、Watch监听 近期遇到个需求&#xff0c;就是需要在.net MVC的项目中&#xff0c;对已有的项目的首页进行优化&#xff0c;也就是写原生html和js。但是咱是一个写前端的&#xff0c;写html还可以&#xff0c;.net的话&#xff0c;开发也…

【小白专用】php执行sql脚本 更新23.12.10

可以使用 PHP 的 mysqli 扩展来执行 SQL 脚本。具体步骤如下&#xff1a; 连接到数据库&#xff1b;打开 SQL 脚本文件并读取其中的 SQL 语句&#xff1b;逐条执行 SQL 语句&#xff1b;关闭 SQL 脚本文件&#xff1b;关闭数据库连接。 以下是通过 mysqli 执行 SQL 脚本的示例…

nginx中Include使用

1.include介绍 自己的理解&#xff1a;如果学过C语言的话&#xff0c;感觉和C语言中的Include引入是一样的&#xff0c;引入的文件中可以写任何东西&#xff0c;比如server相关信息&#xff0c;相当于替换的作用&#xff0c;一般情况下server是写在nginx.conf配置文件中的&…

springboot+ssm+java植物养护花卉花圃管理系统

花圃管理系统&#xff0c;主要的模块包括查看个人中心、游客管理、员工管理、植物种类管理、植物信息管理、植物绿化管理、花圃园区管理、商品服务管理、系统管理等功能。系统中管理员主要是为了安全有效地存储和管理各类信息&#xff0c;还可以对系统进行管理与更新维护等操作…

LabVIEW与Tektronix示波器实现电源测试自动化

LabVIEW与Tektronix示波器实现电源测试自动化 在现代电子测试与测量领域&#xff0c;自动化测试系统的构建是提高效率和精确度的关键。本案例介绍了如何利用LabVIEW软件结合Tektronix MDO MSO DPO2000/3000/4000系列示波器&#xff0c;开发一个自动化测试项目。该项目旨在自动…

winError 123错误的解决

在卸载重载anaconda后&#xff0c;打开anaconda prompt窗口运行conda命令会报错&#xff0c;错误如下所示&#xff1a; 百度了一下是自己环境变量有问题&#xff0c;所以我打开环境变量&#xff1a; 然后打开系统的环境变量之后&#xff0c;查看到我上诉错误的那个环境变量…

ISP IC/FPGA设计-第一部分-MT9V034摄像头分析(0)

MT9V034为CMOS图像传感器&#xff0c;有着极其优秀的图像成像性能&#xff0c;同时支持丰富的功能用于isp的开发&#xff1b;MT9V034 的HDR宽动态、10bit数据深度、RAW格式&#xff08;bayer阵列&#xff09;图像、dvp和lvds接口、60fps正是学习isp开发的理想传感器&#xff1b…

LainChain 原理解析:结合 RAG 技术提升大型语言模型能力

摘要&#xff1a;本文将详细介绍 LainChain 的工作原理&#xff0c;以及如何通过结合 RAG&#xff08;Retrieval-Aggregated Generation&#xff09;技术来增强大型语言模型&#xff08;如 GPT 和 ChatGPT 等&#xff09;的性能。我们将探讨 COT、TOT、RAG 以及 LangChain 的概…

通过虚拟机安装Open5GS 和UERANSIM记录

目录 wsl虚拟环境尝试失败 step1 安装wsl: step2下载Ubuntu 20.04.6 LTS: step3升级wsl&#xff1a; step4生成用户: step5 linux下安装软件需要的镜像&#xff1a; step6 安装图形界面xfce和浏览器&#xff1a; step6 安装chrome virtual box安装ubuntu step7&#xf…

C/C++ 题目:给定字符串s1和s2,判断s1是否是s2的子序列

判断子序列一个字符串是否是另一个字符串的子序列 解释&#xff1a;字符串的一个子序列是原始字符串删除一些&#xff08;也可以不删除&#xff09;字符&#xff0c;不改变剩余字符相对位置形成的新字符串。 如&#xff0c;"ace"是"abcde"的一个子序…