C++ 模拟实现vector

目录

一、定义

二、模拟实现

1、无参初始化

2、size&capacity

3、reserve

4、push_back

5、迭代器

6、empty

7、pop_back

8、operator[ ]

9、resize

10、insert

迭代器失效问题

11、erase

12、带参初始化

13、迭代器初始化

14、析构函数

完整版代码


一、定义

本次参考SGI版本STL中的vector模拟实现。

我们可以看到上述源代码中,SGI版本vector是借助指针实现的,元素的处理是通过两个指针来实现的,而不是三个迭代器。这两个指针分别是_start和_finish。

  • _start指针指向vector中的第一个元素。
  • _finish指针指向vector中最后一个元素的下一个位置。

通过_start和_finish指针,可以确定vector中存储的元素范围。

 

此外,SGI版本的vector还使用了一个指针_end_of_storage来表示vector分配的内存空间的末尾位置。

这些指针的使用使得SGI版本的vector能够高效地进行元素的插入、删除和访问操作。

为了不影响VS中STL库已有的vector,我们选择将模拟实现的vector放在自定义命名空间中。

namespace byte
{
	template<class T>
	class vector
	{
    public:

    private:
    	iterator _start;
    	iterator _finish;
	    iterator _end_of_storage;
    };
}

二、模拟实现

1、无参初始化

vector()
	:_start(nullptr)
	, _finish(nullptr)
	, _end_of_storage(nullptr)
{}

2、size&capacity

size_t capacity() const
{
	return _end_of_storage - _start;
}

size_t size() const
{
	return _finish - _start;
}

3、reserve

void reserve(size_t n)
{
	if (n > capacity())
	{
		size_t sz = size();
		T* tmp = new T[n];
		if (_start)
		{
			memcpy(tmp, _start, sizeof(T) * size());
			delete[] _start;
		}
		_start = tmp;
		_finish = _start + sz;
		_end_of_storage = _start + n;
	}
}
  1. if (n > capacity()):检查传入的n是否大于当前vector的容量。如果是,则需要进行内存重新分配。

  2. size_t sz = size();:保存当前vector的大小(元素个数)。

  3. T* tmp = new T[n];:创建一个新的大小为n的动态数组tmp,用于存储重新分配后的元素。

  4. if (_start):检查_start指针判断旧空间是否为非空。如果_start指针不为空,说明vector中已经有元素存储在旧的内存空间中。

  5. memcpy(tmp, _start, sizeof(T) * size());:使用memcpy函数将旧的内存空间中的元素复制到新的内存空间tmp中。这样可以保留元素的值。

  6. delete[] _start;:释放旧的内存空间。

  7. _start = tmp;:将_start指针指向新的内存空间tmp。

  8. _finish = _start + sz;:更新_finish指针,使其指向新的内存空间中的最后一个元素的下一个位置。

  9. _end_of_storage = _start + n;:更新_end_of_storage指针,使其指向新的内存空间的末尾位置。 

4、push_back

void push_back(const T& x)
{
	if (_finish == _end_of_storage)
	{
		reserve(capacity() == 0 ? 4 : capacity() * 2);
	}
	*_finish = x;
	++_finish;
}
  1. 使用const T& x作为参数类型可以避免不必要的拷贝操作,因为传入的实参可以直接通过引用访问,而不需要进行拷贝构造。这可以提高性能和效率,特别是当处理大型对象时。

    另外,使用const T& x还可以确保传入的元素不会被修改,因为const关键字表示传入的引用是只读的,函数内部不能修改传入的对象。

  2. if (_finish == _end_of_storage) 这个条件判断用于检查当前vector是否已经达到了内存空间的末尾。如果是,则需要进行内存重新分配。

  3. reserve(capacity() == 0 ? 4 : capacity() * 2) 在需要进行内存重新分配时,调用reserve函数来预留更多的内存空间。这里使用了三目运算符,如果当前容量为0,则预留4个元素的空间,否则将当前容量乘以2来预留更多的空间。

  4. *_finish = x 将传入的元素x赋值给_finish指针所指向的位置,即在vector的末尾插入元素。

  5. ++_finish 将_finish指针向后移动一位,指向新插入元素的下一个位置,以便维护vector的边界。

5、迭代器

typedef T* iterator;
typedef const T* const_iterator;

iterator begin()
{
	return _start;
}

iterator end()
{
	return _finish;
}

const_iterator begin() const
{
	return _start;
}

const_iterator end() const
{
	return _finish;
}
  • 首先,通过typedef关键字,定义了两个迭代器类型:iteratorconst_iteratoriterator表示可修改元素的迭代器,而const_iterator表示只读元素的迭代器。
  • 然后,定义了begin()end()函数的多个重载版本,用于返回不同类型的迭代器。

6、empty

bool empty()
{
	return _start == _finish;
}

7、pop_back

void pop_back(const T& x)
{
	assert(!empty());
	--_finish;
}

8、operator[ ]

这个类中有两个重载的下标运算符函数,一个是非常量版本的 operator[],另一个是常量版本的 operator[]。这是为了支持对类对象的读写操作和只读操作的区分。

T& operator[](size_t pos)
{
	assert(pos < size());
	return _start[pos];
}

const T& operator[](size_t pos) const
{
	assert(pos < size());
	return _start[pos];
}

9、resize

void resize(size_t n, T val = T())
{
	if (n < size())
	{
		_finish = _start + n;
	}
	else {
		if (n 》 capacity())
			reserve(n);
		while (_finish != _start + n)
		{
			*_finish = val;
			++_finish;
		}
	}
}

函数签名为 void resize(size_t n, T val = T()),接受两个参数:n 表示新的大小,val 表示新元素的默认值(默认为 T(),通过匿名对象T()调用类型 T 的默认构造函数)。

函数的作用是将容器的大小调整为 n。如果 n 小于当前的大小,则将容器的大小缩小为 n,丢弃多余的元素;如果 n 大于当前的大小,则在容器的末尾添加新的元素,直到容器的大小达到 n

  1. 首先,函数会检查 n 是否小于当前的大小。如果是,说明需要缩小容器的大小,将 _finish 指针移动到新的位置 _start + n,丢弃多余的元素。
  2. 如果 n 大于等于当前的大小,则需要添加新的元素。首先,函数会检查 n 是否大于容器的容量 capacity()。如果 n 大于容量,则调用 reserve 函数来增加容器的容量,以确保容器有足够的空间来存放新的元素。
  3. 然后,使用循环将新的元素 val 添加到容器的末尾,直到容器的大小达到 n。循环中,将 val 赋值给 _finish 指向的位置,然后将 _finish 指针向后移动一位。

匿名对象调用默认构造初始化。

    template<class T>
	void f()
	{
		T x = T();
		cout << x << endl;
	}

  • 在 resize 函数中,T val = T() 是一个带有默认值的函数参数。这里 T() 是对模板参数 T 类型的值初始化,对于内置类型,它会初始化为零(对于指针类型,初始化为 nullptr)。这和 f<T>() 模板函数中的 T x = T() 是一样的。
  • 当你调用 resize 函数时,如果你没有提供第二个参数,那么 val 就会被初始化为 T 类型的默认值。然后,resize 函数会使用 val 的值来填充新添加的元素。
  • 例如,如果你有一个 byte::vector<int> 对象 v,并调用 v.resize(10),那么 resize 函数会将 v 的大小改变为 10,并使用 int 类型的默认值 0 来填充新添加的元素。这和 f<int>() 函数打印 int 类型的默认值 0 是一样的。

 内置类型的默认初始化和直接初始化。

	void test_vector2()
	{
		// 内置类型有没有构造函数
		int i = int();
		int j = int(1);

		f<int>();
		f<int*>();
		f<double>();
	}
  • int i = int(); 使用值初始化,将 i 初始化为零。int j = int(1); 使用直接初始化,将 j 初始化为 1。

  • 分别使用 int、int* 和 double 作为模板参数调用了 f<T>() 函数。这将分别打印 int、int* 和 double 类型的默认值,即 0、nullptr 和 0。

10、insert

iterator insert(iterator pos, const T& val)
{
	assert(pos >= _start);
	assert(pos <= _finish);

	if (_finish == _end_of_storage)
	{
		size_t len = pos - _start;
		reserve(capacity() == 0 ? 4 : capacity() * 2);

		// 扩容后更新pos,解决pos失效的问题
		pos = _start + len;
	}

	iterator end = _finish-1;
	while (end >= pos)
	{
		*(end + 1) = *end;
		--end;
	}

	*pos = val;
	++_finish;

	return pos;
}

函数接受两个参数,第一个参数 pos 是一个迭代器,表示要插入元素的位置,第二个参数 val 是要插入的元素的值。

函数的实现分为以下几个步骤:

  1. 首先,使用 assert 断言来确保 pos 是一个有效的位置,即 pos 必须在 _start 和 _finish 之间。

  2. 然后,检查是否有足够的空间来插入新的元素。如果 _finish 等于 _end_of_storage,表示当前的内存已经用完,需要重新分配内存。这时,会调用 reserve 函数来重新分配内存,新的容量是当前容量的两倍,如果当前容量为 0,则新的容量为 4。然后,更新 pos 的值,因为重新分配内存后,原来的 pos 可能已经失效。

  3. 接下来,从 _finish-1 开始,将每个元素向后移动一位,直到 pos 的位置,为插入新的元素腾出空间。

  4. 然后,将 val 的值赋给 *pos,即在 pos 的位置插入新的元素。

  5. 最后,将 _finish 向后移动一位,表示 vector 的大小增加了一个元素。

  6. 函数返回插入新元素的位置 pos

迭代器失效问题

  1. 在 `byte::vector` 类的 `insert` 函数中,如果需要重新分配内存(即 `_finish+ + == _end_of_storage`),那么所有指向原来内存的迭代器都会失效。这是因为 `reserve` 函数会申请新的内存,复制原来的元素到新的内存,然后释放原来的内存。这个过程会导致原来的内存地址不再有效,因此所有指向原来内存的迭代器都会失效。
  2. 在这个函数中,`pos` 是一个迭代器,它指向要插入新元素的位置。如果在插入新元素之前需要重新分配内存,那么 `pos` 就会失效。为了解决这个问题,函数在重新分配内存后,会根据 `pos` 原来的位置(即 `len = pos - _start`)来更新 `pos` 的值(即 `pos = _start + len`)。这样,`pos` 就会指向新内存中相同的位置。
  3. 所以,如果你在调用 `insert` 函数之后还需要使用原来的迭代器,你需要注意迭代器可能已经失效。你可以在插入新元素后,重新获取迭代器的值。例如,如果你在插入新元素后,想要访问新元素,这里不能常量pos使用引用传值,你可以使用 `insert` 函数的返回值,它返回的是插入新元素的位置。这时外部插入元素后  (*pos)++; 可以正常运行了。

11、erase

我们先看这个版本的erase:

void erase(iterator pos)
{
	assert(pos >= _start && pos < _finish);
	iterator start = pos + 1;
	while (start != _finish)
	{
		*(start - 1) = *start;
		++start;
	}
	--_finish;
}

 当我们运行以下代码程序VS会报错,linux下g++不会报错。

	void test4()
	{
		std::vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		v1.push_back(4);
		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		auto pos = find(v1.begin(), v1.end(), 2);
		if (pos != v1.end())
		{
			v1.erase(pos);
		}

		(*pos)++;

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

VS下: 

g++下:

这段代码中,v1.erase(pos) 会删除 vector 中的一个元素,这会导致 pos 以及所有在 pos 之后的迭代器失效。然后,代码试图通过 (*pos)++ 访问和修改已经失效的迭代器 pos,这是未定义行为,可能会导致程序崩溃或其他错误。

至于为什么 Visual Studio(VS) 会报错,而 g++ 不会报错,这主要是因为不同的编译器对未定义行为的处理方式不同。VS 的调试模式下对迭代器进行了更严格的检查,当你试图访问失效的迭代器时,它会立即报错。而 g++ 在默认设置下可能不会进行这样的检查,所以它可能不会立即报错,但这并不意味着这段代码是正确的。

下面第一种情况删除非末尾元素时,VS的报错没有意义,但在第二种情况下,VS的报错就非常有意义了。 

为了避免这种问题,你应该在删除元素后,不再使用已经失效的迭代器。如果你需要在删除元素后继续访问 vector,你应该在删除元素后重新获取迭代器的值。例如,vector::erase 函数会返回一个指向被删除元素之后的元素的迭代器,你可以使用这个返回值来更新 pos 。

正确版本: 

iterator erase(iterator pos)
{
	assert(pos >= _start);
	assert(pos < _finish);

	iterator start = pos + 1;
	while (start != _finish)
	{
		*(start - 1) = *start;
		++start;
	}

	--_finish;

	return pos;
}

我们来测试一下删除偶数:

void test5()
{
	byte::vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);

	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;

	//要求删除所有偶数
	byte::vector<int>::iterator it = v1.begin();
	while (it != v1.end())
	{
		if (*it % 2 == 0)
		{
			it=v1.erase(it);
		}
		else
		{
			++it;
		}
	}

	for (auto e : v1)
	{
		cout << e << " ";
	}
	cout << endl;
}

 

12、带参初始化

 一定要对_start、_finish、_out_of_storage进行初始化,不初始化默认随机值。 

vector(size_t n, const T& value = T())
	: _start(nullptr)
	, _finish(nullptr)
	, _end_of_storage(nullptr)
{
	reserve(n);
	while (n--)
	{
		push_back(value);
	}
}

这个构造函数创建一个包含 n 个元素的 vector,每个元素都初始化为 valuevalue 参数有一个默认值,即 T(),它是 T 类型的默认构造值。

  • _start(nullptr), _finish(nullptr), _end_of_storage(nullptr): 这一行初始化三个迭代器,它们分别指向数组的开始、当前最后一个元素之后的位置,和分配的内存末端。初始化为 nullptr 表示开始时没有分配任何内存。
  • reserve(n): 这个函数调用会分配足够容纳 n 个元素的内存,但不会创建任何元素。
  • while (n--) { push_back(value); }: 这个循环会不断地添加 value 到 vector 中,直到添加了 n 个元素。push_back 函数会在 vector 的末尾添加一个新元素,并可能会增加 vector 的容量(如果需要)。

为什么对 T& 前面要加 const ?

  • 匿名对象声明周期只在当前一行,因为这行之后没人会用它了。
  • const引用会延长匿名对象的声明周期到引用对象域结束,因为以后用xx就是用匿名对象。

13、迭代器初始化

template <class InputIterator>
vector(InputIterator first, InputIterator last)
{
	while (first != last)
	{
		push_back(*first);
		++first;
	}
}

这个构造函数使用两个迭代器 first 和 last,它们分别指向输入序列的开始和结束,来初始化 vector。这个构造函数可以用于从任何可迭代的容器(如另一个 vector、列表、数组等)复制元素。

  • 在这个构造函数中,没有显式地调用 reserve 来预分配内存。这意味着每次用 push_back 时,如果当前容量不足以容纳新元素,就会自动进行内存重新分配。
  • while (first != last) { push_back(*first); ++first; }: 这个循环会遍历输入序列的每个元素,从 first 开始,一直到达 last(但不包括 last),并使用每个元素的值调用 push_back,将其添加到 vector 中。

 但是对于这句代码编译之后会报错:

vector<int> v1(10, 5);

 这是因为这段代码在vector(InputIterator first, InputIterator last)和vector(size_t n, const T& value = T())同时存在时,会优先调用前者,但调研之后在函数内部first的模板类型为int,而*first为对int类型解引用,所以这样报错了。

我们只要添加一个int类型重载函数即可解决。

vector(int n, const T& val = T())
{
	reserve(n);
	for (int i = 0; i < n; ++i)
	{
		push_back(val);
	}
}

 这种情况在不加上上述函数可以正常使用,调用vector(size_t n, const T& value = T())。

vector<int> v1(10u, 5);

14、析构函数

~vector()
{
	delete[] _start;
	_start = _finish = _end_of_storage = nullptr;
}

完整版代码&测试代码

#pragma once
#include<assert.h>
namespace byte
{
	template<class T>
	class vector
	{
	public:
		typedef T* iterator;
		typedef const T* const_iterator;

		iterator begin()
		{
			return _start;
		}

		iterator end()
		{
			return _finish;
		}

		const_iterator begin() const
		{
			return _start;
		}

		const_iterator end() const
		{
			return _finish;
		}

		void resize(size_t n, T val = T())
		{
			if (n < size())
			{
				_finish = _start + n;
			}
			else {
				if (n < capacity())
					reserve(n);
				while (_finish != _start + n)
				{
					*_finish = val;
					++_finish;
				}
			}
		}

		vector()
			:_start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{}

		vector(size_t n, const T& value = T())
			: _start(nullptr)
			, _finish(nullptr)
			, _end_of_storage(nullptr)
		{
			reserve(n);
			while (n--)
			{
				push_back(value);
			}
		}

		vector(int n, const T& val = T())
		{
			reserve(n);
			for (int i = 0; i < n; ++i)
			{
				push_back(val);
			}
		}

		template<class InputIterator>
		vector(InputIterator first, InputIterator last)
		{
			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}

		~vector()
		{
			delete[] _start;
			_start = _finish = _end_of_storage = nullptr;
		}
		
		void reserve(size_t n)
		{
			if (n > capacity())
			{
				size_t sz = size();
				T* tmp = new T[n];
				if (_start)
				{
					memcpy(tmp, _start, sizeof(T) * size());
					delete[] _start;
				}
				_start = tmp;
				_finish = _start + sz;
				_end_of_storage = _start + n;
			}
		}

		void push_back(const T& x)
		{
			if (_finish == _end_of_storage)
			{
				reserve(capacity() == 0 ? 4 : capacity() * 2);
			}
			*_finish = x;
			++_finish;
		}

		void pop_back(const T& x)
		{
			assert(!empty());
			--_finish;
		}

		void insert(iterator pos, const T& val)
		{
			assert(pos >= _start);
			assert(pos <= _finish);
			
			if (_finish == _end_of_storage)
			{
				size_t len = pos - _start;
				reserve(capacity() == 0 ? 4 : capacity() * 2);
				pos = _start + len;
			}

			iterator end = _finish - 1;
			while (end >= pos)
			{
				*(end + 1) = *end;
				--end;
			}
			*pos = val;
			++_finish;
		}

		iterator erase(iterator pos)
		{
			assert(pos >= _start && pos < _finish);
			iterator start = pos + 1;
			while (start != _finish)
			{
				*(start - 1) = *start;
				++start;
			}
			--_finish;

			return pos;
		}

		size_t capacity() const
		{
			return _end_of_storage - _start;
		}

		size_t size() const
		{
			return _finish - _start;
		}

		bool empty()
		{
			return _start == _finish;
		}
		T& operator[](size_t pos)
		{
			assert(pos < size());
			return _start[pos];
		}

		const T& operator[](size_t pos) const
		{
			assert(pos < size());
			return _start[pos];
		}
	private:
		iterator _start;
		iterator _finish;
		iterator _end_of_storage;
	};


	void func(const vector<int>& v)
	{
		for (size_t i = 0; i < v.size(); ++i)
		{
			cout << v[i] << " ";
		}
		cout << endl;

		vector<int>::const_iterator it = v.begin();
		while (it != v.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl << endl;
	}

	void test1()
	{
		vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		for (size_t i = 0; i < v1.size(); i++)
		{
			cout << v1[i] << " ";
		}
		cout << endl;

		vector<int>::iterator it = v1.begin();
		while (it != v1.end())
		{
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test2()
	{
		vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		v1.push_back(4);
		v1.push_back(5);

		cout << v1.size() << endl;
		cout << v1.capacity() << endl;

		v1.resize(10);

		cout << v1.size() << endl;
		cout << v1.capacity() << endl;

		func(v1);

		v1.resize(3);

		func(v1);
	}

	void test3()
	{
		std::vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		v1.push_back(4);
		//v1.push_back(5);
		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		/*v1.insert(v1.begin(), 0);
		for (auto e : v1)
		{
		cout << e << " ";
		}
		cout << endl;*/

		auto pos = find(v1.begin(), v1.end(), 3);
		if (pos != v1.end())
		{
			//v1.insert(pos, 30);
			pos = v1.insert(pos, 30);
		}

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		// insert以后我们认为pos失效了,不能再使用
		(*pos)++;

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test4()
	{
		std::vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		v1.push_back(4);
		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		//auto pos = find(v1.begin(), v1.end(), 2);
		auto pos = find(v1.begin(), v1.end(), 4);
		if (pos != v1.end())
		{
			v1.erase(pos);
		}

		(*pos)++;

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

	}

	void test5()
	{
		byte::vector<int> v1;
		v1.push_back(1);
		v1.push_back(2);
		v1.push_back(3);
		v1.push_back(4);

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		//要求删除所有偶数
		byte::vector<int>::iterator it = v1.begin();
		while (it != v1.end())
		{
			if (*it % 2 == 0)
			{
				it=v1.erase(it);
			}
			else
			{
				++it;
			}
		}

		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test6()
	{
		vector<int> v1(10, 5);
		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;

		vector<int> v2(v1.begin() + 1, v1.end() - 1);
		for (auto e : v2)
		{
			cout << e << " ";
		}
		cout << endl;

		std::string s1("hello");
		vector<int> v3(s1.begin(), s1.end());
		for (auto e : v3)
		{
			cout << e << " ";
		}
		cout << endl;

		int a[] = { 100, 10, 2, 20, 30 };
		vector<int> v4(a, a + 3);
		for (auto e : v4)
		{
			cout << e << " ";
		}
		cout << endl;

		v1.insert(v1.begin(), 10);
		for (auto e : v1)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/235010.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis 四大核心组件之 Executor 源码解析

&#x1f680; 作者主页&#xff1a; 有来技术 &#x1f525; 开源项目&#xff1a; youlai-mall &#x1f343; vue3-element-admin &#x1f343; youlai-boot &#x1f33a; 仓库主页&#xff1a; Gitee &#x1f4ab; Github &#x1f4ab; GitCode &#x1f496; 欢迎点赞…

【IDEA】IntelliJ IDEA中进行Git版本控制

本篇文章主要记录一下自己在IntelliJ IDEA上使用git的操作&#xff0c;一个新项目如何使用git进行版本控制。文章使用的IDEA版本 IntelliJ IDEA Community Edition 2023.3&#xff0c;远程仓库为https://gitee.com/ 1.配置Git&#xff08;File>Settings&#xff09; 2.去Git…

Leetcode刷题详解——仅仅反转字母

1. 题目链接&#xff1a;917. 仅仅反转字母 2. 题目描述&#xff1a; 给你一个字符串 s &#xff0c;根据下述规则反转字符串&#xff1a; 所有非英文字母保留在原有位置。所有英文字母&#xff08;小写或大写&#xff09;位置反转。 返回反转后的 s 。 示例 1&#xff1a; 输…

docker-ubuntu中基于keepalived+niginx模拟主从热备完整过程

一、环境准备 &#x1f517;在Ubuntu中安装docker 二、主机 1、环境搭建 1.1 镜像拉取 docker pull ubuntu:16.041.2 创建网桥 docker network create -dbridge --subnet192.168.126.0/24 br11.3 启动容器 docker run -it --name ubuntu-1 --privileged -v /home/vac/l…

PPP协议概述与实验示例

PPP协议概述与实验示例 概述 PPP&#xff08;Point-to-Point Protocol&#xff09;是一种用于在点对点连接上传输多协议数据包的标准方法。它已经成为最广泛使用的互联网接入数据链路层协议&#xff0c;可以与各种技术结合&#xff0c;如ADSL、LAN等&#xff0c;实现宽带接入…

【rabbitMQ】rabbitMQ控制台模拟收发消息

目录 1.新建队列 2.交换机绑定队列 3.查看消息是否到达队列 总结&#xff1a; 1.新建队列 2.交换机绑定队列 点击amq.fonout 3.查看消息是否到达队列 总结&#xff1a; 生产者&#xff08;publisher&#xff09;发送消息&#xff0c;先到达交换机&#xff0c;再到队列&…

phpstudy小皮(PHP集成环境)下载及使用

下载 https://www.xp.cn/download.html直接官网下载即可&#xff0c;下载完解压是个.exe程序&#xff0c;直接点击安装就可以&#xff0c;它会自动在D盘目录为D:\phpstudy_pro 使用 phpMyAdmin是集成的数据库可视化&#xff0c;这里需要下载一下&#xff0c;在软件管理-》网站程…

linux逻辑卷LVM

创建LVMVG管理LV扩容 6.2.6 逻辑卷LVM LVM是Logical Volume Manager 的简称&#xff0c;译为逻辑卷管理&#xff0c;它是Linux下对硬盘分区的一种管理机制。LVM适合于管理大存储设备&#xff0c;并允许用户动态调整文件系统的大小。此外&#xff0c;LVM的快照功能可以帮助我们快…

第九天:信息打点-CDN绕过篇amp;漏洞回链amp;接口探针amp;全网扫描amp;反向邮件

信息打点-CDN绕过篇 cdn绕过文章&#xff1a;https://www.cnblogs.com/qiudabai/p/9763739.html 一、CDN-知识点 1、常见访问过程 1、没有CDN情况下传统访问&#xff1a;用户访问域名-解析服务器IP–>访问目标主机 2.普通CDN&#xff1a;用户访问域名–>CDN节点–>…

设计模式-外观模式

设计模式专栏 模式介绍模式特点应用场景外观模式和里氏替换原则的区别代码示例Java实现外观模式python实现外观模式 外观模式在spring中的应用 模式介绍 外观模式&#xff08;Facade Pattern&#xff09;是一种结构性设计模式&#xff0c;它隐藏了系统的复杂性&#xff0c;并向…

[后端卷前端2]

绑定class 为什么需要样式绑定呢? 因为有些样式我们希望能够动态展示 看下面的例子: <template><div><p :class"{active:modifyFlag}">class样式绑定</p></div> </template><script>export default {name: "goo…

Docker中的常见命令

Docker开机自启 systemctl enable dockerDocker容器开机自启 docker update --restartalways [容器名/容器id]案例&#xff1a;docker操作nginx 拉取Nginx镜像 docker pull nginx查看镜像 docker images创建并运行Nginx容器 docker run -d --name nginx -p 80:80 nginx查…

(NeRF学习)3D Gaussian Splatting Instant-NGP环境配置

学习参考&#xff1a; 3D gaussian splatting 安装步骤拆解23.9月3D Gaussian Splatting入门指南【五分钟学会渲染自己的NeRF模型&#xff0c;有手就行&#xff01;】 三维重建instant-ngp环境部署与colmap、ffmpeg的脚本参数使用 一、3D Gaussian Splatting &#xff08;一&…

airserver mac 7.27官方破解版2024最新安装激活图文教程

airserver mac 7.27官方破解版是一款好用的airplay投屏工具&#xff0c;可以轻松将ios荧幕镜像&#xff08;airplay&#xff09;至mac上&#xff0c;在mac平台上实现视频、音频、幻灯片等文件资源的接收及投放演示操作&#xff0c;解决iphone或ipad的屏幕录像问题&#xff0c;满…

【实战教程】PHP如何轻松对接阿里云直播?

1. 配置阿里云直播的推流地址和播放地址 使用阿里云直播功能前&#xff0c;首先需要在阿里云控制台中创建直播应用&#xff0c;然后获取推流地址和播放地址。 推流地址一般格式为&#xff1a; rtmp://{Domain}/{AppName}/{StreamName}?auth_key{AuthKey}-{Timestamp}-{Rand…

[虚拟机]使用VM打开虚拟机电脑重启解决方案。

问题&#xff1a;打开虚拟机点击启动后&#xff0c;电脑会自动重启。&#xff08;WINDOWS10 20版本&#xff09; 解决步骤&#xff1a; 1、对Windows功能进行操作。 上图三个启用。 上图一个取消。 再次打开后&#xff0c;不报警&#xff0c;显示下图问题&#xff1a; 继续解…

基于SpringBoot+Vue前后端分离的商城管理系统(Java毕业设计)

大家好&#xff0c;我是DeBug&#xff0c;很高兴你能来阅读&#xff01;作为一名热爱编程的程序员&#xff0c;我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里&#xff0c;我将会结合实际项目经验&#xff0c;分享编程技巧、最佳实践以及解决问题的方法。无论你是…

【Linux】find . -perm 644 -exec ls -l {} \;

find . -perm 644 -exec ls -l {} ; find 命令使用 -perm 644 条件来查找文件权限为644的文件&#xff0c;然后通过 -exec ls -l {} \; 将这些文件传递给 ls -l 命令来显示详细的文件列表。 find . -perm 644&#xff1a;在当前目录及其子目录中查找文件权限为644的文件。 -e…

VINS-MONO代码解读5----vins_estimator(marginalization部分)

文章目录 0. 前言1.1 Marginalization Pipiline 1. marg factor构建1.1 变量及维度理解1.2 IMUFactor1.3 ProjectionTdFactor(ProjectionFactor)1.4 MarginalizationFactor( e p e_p ep​推导更新&#xff0c;FEJ解决的问题)1.4.1 先验残差的更新1.4.2 先验Jacobian的更新 2. R…

【大数据】Hudi 核心知识点详解(二)

&#x1f60a; 如果您觉得这篇文章有用 ✔️ 的话&#xff0c;请给博主一个一键三连 &#x1f680;&#x1f680;&#x1f680; 吧 &#xff08;点赞 &#x1f9e1;、关注 &#x1f49b;、收藏 &#x1f49a;&#xff09;&#xff01;&#xff01;&#xff01;您的支持 &#x…