(一)五种最新算法(SWO、COA、LSO、GRO、LO)求解无人机路径规划MATLAB

一、五种算法(SWO、COA、LSO、GRO、LO)简介

1、蜘蛛蜂优化算法SWO

蜘蛛蜂优化算法(Spider wasp optimizer,SWO)由Mohamed Abdel-Basset等人于2023年提出,该算法模型雌性蜘蛛蜂的狩猎、筑巢和交配行为,具有搜索速度快,求解精度高的优势。VRPTW(MATLAB):蜘蛛蜂优化算法SWO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

[1]Abdel-Basset, M., Mohamed, R., Jameel, M. et al. Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif Intell Rev (2023). Spider wasp optimizer: a novel meta-heuristic optimization algorithm | SpringerLink

2、小龙虾优化算法COA

小龙虾优化算法(Crayfsh optimization algorithm,COA)由Jia Heming 等人于2023年提出,该算法模拟小龙虾的避暑、竞争和觅食行为,具有搜索速度快,搜索能力强,能够有效平衡全局搜索和局部搜索的能力。多目标优化算法:基于非支配排序的小龙虾优化算法(NSCOA)MATLAB-CSDN博客

参考文献:

[1] Jia, H., Rao, H., Wen, C. et al. Crayfish optimization algorithm. Artif Intell Rev (2023). Crayfish optimization algorithm | SpringerLink

3、光谱优化算法LSO

光谱优化算法(Light Spectrum Optimizer,LSO)由Mohamed Abdel-Basset等人于2022年提出。MD-MTSP:光谱优化算法LSO求解多仓库多旅行商问题MATLAB(可更改数据集,旅行商的数量和起点)-CSDN博客

参考文献:

[1]Abdel-Basset M, Mohamed R, Sallam KM, Chakrabortty RK. Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm. Mathematics. 2022; 10(19):3466. Mathematics | Free Full-Text | Light Spectrum Optimizer: A Novel Physics-Inspired Metaheuristic Optimization Algorithm

4、淘金优化算法GRO

淘金优化算法(Gold rush optimizer,GRO)由Kamran Zolf于2023年提出,其灵感来自淘金热,模拟淘金者进行黄金勘探行为。VRPTW(MATLAB):淘金优化算法GRO求解带时间窗的车辆路径问题VRPTW(提供参考文献及MATLAB代码)-CSDN博客

参考文献:

K. Zolfi. Gold rush optimizer: A new population-based metaheuristic algorithm. Operations Research and Decisions 2023: 33(1), 113-150. DOI 10.37190/ord230108

5、狐猴优化算法

狐猴优化算法(Lemurs Optimizer,LO)由Ammar Kamal Abasi等人于2022年提出,该算法模拟狐猴的跳跃和跳舞行为,具有结构简单,思路新颖,搜索速度快等优势。单目标应用:基于狐猴优化算法(Lemurs Optimizer,LO)的微电网优化调度MATLAB-CSDN博客

参考文献:

[1]Abasi AK, Makhadmeh SN, Al-Betar MA, Alomari OA, Awadallah MA, Alyasseri ZAA, Doush IA, Elnagar A, Alkhammash EH, Hadjouni M. Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization. Applied Sciences. 2022; 12(19):10057. Applied Sciences | Free Full-Text | Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

二、模型简介

单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客

参考文献:

[1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120

三、SWO、COA、LSO、GRO、LO求解无人机路径规划

(1)部分代码

close all
clear  
clc
warning off;
%% 三维路径规划模型定义
global startPos goalPos N
N=2;%待优化点的个数(可以修改)
startPos = [10, 10, 80]; %起点(可以修改)
goalPos = [80, 90, 150]; %终点(可以修改)
SearchAgents_no=30; % 种群大小(可以修改)
Function_name='F1'; %F1:随机产生地图 F2:导入固定地图
Max_iteration=100; %最大迭代次数(可以修改)
% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
AlgorithmName={'SWO','COA','LSO','GRO','LO'};%算法名称
addpath('./AlgorithmCode/')%添加算法路径
bestFit=[];%保存各算法的最优适应度值
for i=1:size(AlgorithmName,2)%遍历每个算法,依次求解当前问题
Algorithm=str2func(AlgorithmName{i});%获取当前算法名称,并将字符转换为函数
[Best_score,Best_pos,Convergence_curve]=Algorithm(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%当前算法求解
%将当前算法求解结果放入data中
data(i).Best_score=Best_score;%保存该算法的Best_score到data
data(i).Best_pos=Best_pos;%保存该算法的Best_pos到data
data(i).Convergence_curve=Convergence_curve;%保存该算法的Convergence_curve到data
bestFit=[bestFit data(i).Best_score];
end
save data data
%%  画各算法的直方图
figure 
bar(bestFit)
ylabel('无人机飞行路径长度');
set(gca,'xtick',1:1:size(AlgorithmName,2));
set(gca,'XTickLabel',AlgorithmName)
saveas(gcf,'./Picture/直方图.jpg') %将图片保存到Picture文件夹下面


%%  画收敛曲线
strColor={'r--','g-','b-.','k--','m:','c-','y-'};
figure
for i=1:size(data,2)
plot(data(i).Convergence_curve,strColor{i},'linewidth',1.5)%semilogy
hold on
end
xlabel('迭代次数');
ylabel('无人机飞行路径长度');
legend(AlgorithmName,'Location','Best')
saveas(gcf,'./Picture/收敛曲线.jpg') %将图片保存到Picture文件夹下面


%% 显示三维图并保存
path=plotFigure(data,AlgorithmName,strColor);%path是各算法求解的无人机路径
saveas(gcf,'./Picture/路径曲线(三维).jpg') %将图片保存到Picture文件夹下面
save path path
%% 显示二维图并保存
view(2)
saveas(gcf,'./Picture/路径曲线(二维).jpg') %将图片保存到Picture文件夹下面
%% 显示三维图
path=plotFigure(data,AlgorithmName,strColor);%三维图 path是各算法求解的无人机路径




(2)部分结果

四、完整MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/232913.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vscode 编译运行c++ 记录

一、打开文件夹,新建或打开一个cpp文件 二、ctrl shift p 进入 c/c配置 进行 IntelliSense 配置。主要是选择编译器、 c标准, 设置头文件路径等,配置好后会生成 c_cpp_properties.json; 二、编译运行: 1、选中ma…

SpringBoot的依赖管理和自动配置

与其明天开始,不如现在行动! 文章目录 1 依赖管理机制2 自动配置机制2.1 初步理解2.2 完整流程 💎总结 1 依赖管理机制 为什么导入starter-web后所有相关依赖都会导入进来? 开发什么场景,导入什么场景启动器-spring-bo…

[ROS2] --- action

1 action介绍 ROS通信机制也会被常常用到——那就是动作。从这个名字上就可以很好理解这个概念的含义,这种通信机制的目的就是便于对机器人某一完整行为的流程进行管理。 1.1 客户端/服务器模型 动作和服务类似,使用的也是客户端和服务器模型&#xf…

zabbix 进阶

zabbix的字段发现机制: zabbix客户端主动和服务端联系,将自己的地址和端口发送服务端实现字段添加监控主机。 客户端是主动一方。 缺点:自定义网段中主机数量太多,登记耗时会很久,而且这个自动发现机制不是很稳定。…

c-语言->数据在内存的存储

系列文章目录 文章目录 系列文章目录前言 前言 目的:学习整数在内存的储存,什么是大小端,浮点数的储存。 1. 整数在内存中的存储 在讲解操作符的时候,我们就讲过了下⾯的内容: 整数的2进制表⽰⽅法有三种&#xff0…

Minio保姆级教程

转载自:www.javaman.cn Minio服务器搭建和整合 1、centos安装minio 1.1、创建安装目录 mkdir -p /home/minio1.2、在线下载minio #进入目录 cd /home/minio #下载 wget https://dl.minio.io/server/minio/release/linux-amd64/minio1.3、minio配置 1.3.1、添加…

基于Springboot的校园失物招领系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的校园失物招领系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…

三、jvm中的对象及引用

一、对象在jvm的创建过程 检查加载-->分配内存-->内存空间初始化-->设置-->对象初始化 1) 检查加载 首先检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查类是否已经被加载、解析和初始化过。 虚拟机遇到一条 new 指令时&#xf…

【Deeplearning4j】小小的了解下深度学习

文章目录 1. 起因2. Deeplearning4j是什么3. 相关基本概念4. Maven依赖5. 跑起来了,小例子!6. 鸢尾花分类代码 7. 波士顿房价 回归预测代码 8. 参考资料 1. 起因 其实一直对这些什么深度学习,神经网络很感兴趣,之前也尝试过可能因…

Python实现GUI图片浏览程序

Python实现GUI图片浏览程序 下面程序需要pillow库。pillow是 Python 的第三方图像处理库,需要安装才能实用。pillow是PIL( Python Imaging Library)基础上发展起来的,需要注意的是pillow库安装用pip install pillow,导…

javaEE -14(10000字 JavaScript入门 - 1)

一:初始 JavaScript JavaScript (简称 JS)是世界上最流行的编程语言之一,它是一个脚本语言, 通过解释器运,主要在客户端(浏览器)上运行, 现在也可以基于 node.js 在服务器端运行. JavaScript 和 HTML 和 CSS 之间的关系: HTML…

Rellax.js,一款超酷的 JavaScript 滚动效果库

嗨,大家好,欢迎来到猿镇,我是镇长,lee。 又到了和大家见面的时间,今天和大家分享一款轻松实现视差滚动效果的 JavaScript 库——Rellax.js。无需大量的配置,即可为你的网站增色不少。 什么是Rellax.js&am…

simulinkveristandlabview联合仿真环境搭建

目录 开篇废话 软件版本 明确需求 软件安装 matlab2020a veristand2020 R4 VS2017 VS2010 软件安装验证 软件资源分享 开篇废话 推免之后接到的第一个让人难绷的活,网上开源的软件资料和成功的案例很少,查来查去就那么几篇,而且版本…

以pycharm为例,生成Python项目所需要的依赖库/包文档:requirements.txt

平时我们在编写或者使用别人的Python项目时,往往会看到一个文档requirements.txt,该文档是描述一个Python项目中的第三方库的名称以及版本。本文介绍导出python当前项目依赖包requirements.txt的操作步骤。 方法一:如果每个项目有对应的虚拟…

Java零基础——Elasticsearch篇

1.Elasticsearch简介 Elasticsearch是一个基于Lucene的一个开源的分布式、RESTful 风格的搜索和数据分析引擎。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中&#xf…

13. MySQL 日志

目录 错误日志 binlog日志 概述 日志格式 查询日志 慢查询日志 错误日志 错误日志是MySQL中最重要的日志之一,它记录了当mysqld启动和停止时,以及服务器在运行过程中发生任何严重错误时的相关信息。当数据库出现任何故障导致无法正常使用时&#…

用Rust刷LeetCode之26 删除有序数组中的重复项

26. 删除排序数组中的重复项[1] 难度: 简单 老的描述: 新的描述: 注意是 排序数组,非严格递增排列,即已经是排好序的,只不过有重复元素 func removeDuplicates(nums []int) int { if len(nums) 0 { return 0 } i : 0 for j : 1; j < len(nums); j { …

Kubernetes架构及核心部件

文章目录 1、Kubernetes集群概述1.1、概述1.2、通过声明式API即可 2、Kubernetes 集群架构2.1、Master 组件2.1.1、API Server2.1.2、集群状态存储2.1.3、控制器管理器2.1.4、调度器 2.2、Worker Node 组件2.2.1、kubelet2.2.2、容器运行时环境2.2.3、kube-proxy 2.3、图解架构…

AI隆重软件,AI原创文章隆重软件

随着信息量的急剧增加&#xff0c;许多写作者、网站管理员和内容创作者们纷纷感受到了文章降重的压力。原始文本的降重&#xff0c;需要保留关键信息的同时避免重复&#xff0c;这是一项既繁琐又耗时的任务。 改写软件的批量降重功能 147SEO改写软件在降重领域的卓越表现主要体…

PHP基础 - 注释变量

一. 语言开始标识 在PHP中,文件的开头需要使用语言开始标识来指定该文件是PHP代码。标识通常为"<?php",也可以是"<?",但建议使用"<?php"以确保代码的兼容性和可读性。 <?php // PHP代码从这里开始写 二. PHP注释 注释是用…