智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于人工兔算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.人工兔算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用人工兔算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.人工兔算法

人工兔算法原理请参考:https://blog.csdn.net/u011835903/article/details/128491707
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

人工兔算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明人工兔算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/232283.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud Gateway 网关的基础使用

1. 什么是网关?网关有什么用? 在微服务架构中,网关就是一个提供统一访问地址的组件,它解决了内部微服务与外部的交互问题。网关主要负责流量的路由和转发,将外部请求引到对应的微服务实例上。同时提供身份认证、授权、…

吴恩达最新短课,知识很硬核,附中英字幕

吴恩达最新短课,知识很硬核,附中英字幕 简介 大家好我是老章,吴恩达老师忠实粉丝 之前刷过他的很多课程: 吴恩达新课,1.25倍速刷完了 给吴恩达的最新短课加了中英文字幕 最近吴老师又限时免费开放了一个短课&…

ambari 开启hdfs回收站机制

hdfs回收站类似于我们常用的windows中的回收站,被删除的文件会被暂时存储于此,和回收站相关的参数有两个: fs.trash.interval:默认值为0 代表禁用回收站,其他值为回收站保存文件时间,单位为分钟 fs.trash…

[足式机器人]Part2 Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System

本文仅供学习使用 本文参考: B站:DR_CAN Dr. CAN学习笔记-自动控制原理Ch1-1开环系统与闭环系统Open/Closed Loop System EG1: 烧水与控温水壶EG2: 蓄水与最终水位闭环控制系统 EG1: 烧水与控温水壶 EG2: 蓄水与最终水位 h ˙ q i n A − g h A R \dot{…

javacv踩坑记录

前一阵学习opencv,发现在做人脸识别的时候遇到一些类库不存在的情况,查找后发现是由于拓展包没有安装完全(仅安装了基础版)。由于网络的问题(初步猜测),始终无法安装好拓展包。 于是另辟蹊径&am…

go sort.Search()

函数 func Search(n int, f func(int) bool) int {} 函数作用 通过二分法查找,找到已经排序好的数组[0,n)中第一个使f为true的索引,如果没有找到返回n 为什么要用二分查找? 因为二分查找相比普通依次遍历而言,速度能有巨幅提升…

【1】一文读懂PyQt简介和环境搭建

目录 1. PyQt简介 1.1. Qt 1.2. PyQt 1.3. 关于PyQt和PySide 2. 通过pip安装PyQt5 3. 无法运行处理 4. VSCode配置PYQT插件 PyQt官网:Riverbank Computing | Introduction 1. PyQt简介 PyQt是一套Python的GUI开发框架,即图形用户界面开发框架。 Python中经常使用的GU…

解决IDEA中多个项目不在同一窗口下显示的问题和添加新的git的URL

以上是添加显示多个项目 以下是给新添加的项目添加git

ROS gazebo 机器人仿真,环境与robot建模,添加相机 lidar,控制robot运动

b站上有一个非常好的ros教程234仿真之URDF_link标签简介-机器人系统仿真_哔哩哔哩_bilibili,推荐去看原视频。 视频教程的相关文档见:6.7.1 机器人运动控制以及里程计信息显示 Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程 本文对视频教程…

C语言实战演练之C语言满屏飘字表白代码(可修改文案)

关注我将爱永远写进文里 "你的名字,是我读过最短的情诗" 下面是截图效果,实战运行是动态图 在本篇文章中,厾罗将c语言实现的文字跑马灯做了进一步的完善,最终实现了一个进阶版的满屏飘字表白程序,一起来…

Leetcode刷题笔记题解(C++):LCR 181. 字符串中的单词反转

思路:根据栈的原理先进后出,使用栈来依次保存每个单词,然后再依次从栈中取出每个单词 class Solution { public:string reverseMessage(string message) {int left 0;int right message.size()-1;//消除字符串前后多余的空格,比…

mybatis数据输出-insert操作时获取自增列的值给对应的属性赋值

jdbc-修改 水果库存系统的 BaseDao 的 executeUpdate 方法支持返回自增列-CSDN博客 1、建库建表 CREATE DATABASE mybatis-example;USE mybatis-example;CREATE TABLE t_emp(emp_id INT AUTO_INCREMENT,emp_name CHAR(100),emp_salary DOUBLE(10,5),PRIMARY KEY(emp_id) );INSE…

点评项目——优惠卷秒杀

2023.12.8 本章将用redis实现优惠劵秒杀下单的功能。 构建全局唯一ID 我们都有在店铺中抢过优惠券,优惠券也是一种商品,当用户抢购时,就会生成订单并保存到数据库对应的表中,而订单表如果使用数据库自增ID就存在一些问题&#xf…

二叉树的锯齿形层序遍历[中等]

优质博文:IT-BLOG-CN 一、题目 给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。 示例 1: 输…

【Java 基础】27 XML 解析

文章目录 1.SAX 解析器1)什么是 SAX2)SAX 工作流程初始化实现事件处理类解析 3)示例代码 2.DOM 解析器1)什么是 DOM2)DOM 工作流程初始化解析 XML 文档操作 DOM 树 3)示例代码 总结 在项目开发中&#xff0…

阿里云(云服务器)上搭建项目部署环境

目录 安装docker docker安装MySQL5.7.37 安装MySQL 方式一:docker中MySQL时区调整 方式二:docker中MySQL时区调整 docker安装MySQL8.0.27 docker安装redis5.0.14 云服务器上安装jdk1.8 安装docker 1、先卸载docker,因为有一些服务器…

Grad-CAM原理

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 只要大家一提到深度学习 缺乏一定的解释性 比如说在我们之前讲的分类网络当中 网络它为什么要这么预测 它针对每个类别所关注的点在哪里呢 在great cam这篇论文当中呢 就完美的解决了在cam这篇论…

SpringSecurity6 | 自定义登录页面

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Java从入门到精通 ✨特色专栏&#xf…

基于Vue框架的电子商城购物平台小程序的设计与开发

基于JavaWebSSMVue电子商城购物平台小程序系统的设计和实现 源码获取入口KaiTi 报告/Ren务书Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 KaiTi 报告/Ren务书 一、选题的目的和意义 自从微信推出了微信小程序…

1.cloud-微服务架构编码构建

1.微服务cloud整体聚合父工程 1.1 New Project 1.2 Maven选版本 1.3 字符编码 1.4 注解生效激活 主要为lombok中的Data 1.5 java编译版本选8 1.6 File Type过滤 *.hprof;*.idea;*.iml;*.pyc;*.pyo;*.rbc;*.yarb;*~;.DS_Store;.git;.hg;.svn;CVS;__pycache__;_svn;vssver.scc;v…