文章目录
- 907. 子数组的最小值之和(单调栈+贡献法)
- 1670. 设计前中后队列⭐(设计数据结构)
- 解法1——双向链表
- 解法2——两个双端队列
- 2336. 无限集中的最小数字
- 解法1——维护最小变量mn 和 哈希表维护已经去掉的数字
- 解法2——维护原本可用的最小值 和 有序集合维护后期添加的数值👌
- 1657. 确定两个字符串是否接近(理解操作本质)⭐
- 2661. 找出叠涂元素(哈希表、计数统计)
- 1094. 拼车(差分)
- 1423. 可获得的最大点数(滑动窗口)
907. 子数组的最小值之和(单调栈+贡献法)
https://leetcode.cn/problems/sum-of-subarray-minimums/description/?envType=daily-question&envId=2023-11-27
提示:
1 <= arr.length <= 3 * 10^4
1 <= arr[i] <= 3 * 10^4
class Solution {
private static final int MOD = (int)1e9 + 7;
public int sumSubarrayMins(int[] arr) {
long ans = 0; // 使用long总归是有利于避免溢出
int n = arr.length;
// 计算每个数字作为最小值的贡献,即找到左右两侧第一个小于它的(一边严格小于,另一边小于等于)
Deque<Integer> stk = new ArrayDeque();
int[] right = new int[n], left = new int[n];
Arrays.fill(left, -1);
Arrays.fill(right, n);
for (int i = 0; i < n; ++i) {
while (!stk.isEmpty() && arr[i] <= arr[stk.peek()]) {
right[stk.pop()] = i;
}
if (!stk.isEmpty()) left[i] = stk.peek();
stk.push(i);
}
for (int i = 0; i < n; ++i) {
ans = (ans + (long)arr[i] * (right[i] - i) * (i - left[i])) % MOD;
}
return (int)ans;
}
}
1670. 设计前中后队列⭐(设计数据结构)
https://leetcode.cn/problems/design-front-middle-back-queue/description/?envType=daily-question&envId=2023-11-28
提示:
1 <= val <= 10^9
最多调用 1000 次 pushFront, pushMiddle, pushBack, popFront, popMiddle 和 popBack 。
解法1——双向链表
自己写的代码如下:
class FrontMiddleBackQueue {
Node head = new Node(), tail = new Node();
int sz = 0;
public FrontMiddleBackQueue() {
head.next = tail;
tail.prev = head;
}
public void pushFront(int val) {
Node node = new Node(val, head, head.next);
head.next.prev = node;
head.next = node;
sz++;
}
public void pushMiddle(int val) {
Node cur = head;
for (int i = 0; i < sz / 2; ++i) {
cur = cur.next;
}
Node node = new Node(val, cur, cur.next);
cur.next.prev = node;
cur.next = node;
sz++;
}
public void pushBack(int val) {
Node node = new Node(val, tail.prev, tail);
tail.prev.next = node;
tail.prev = node;
sz++;
}
public int popFront() {
if (sz == 0) return -1;
int res = head.next.val;
head.next.next.prev = head;
head.next = head.next.next;
--sz;
return res;
}
public int popMiddle() {
if (sz == 0) return -1;
Node cur = head;
for (int i = 0; i < (sz - 1) / 2; ++i) cur = cur.next;
int res = cur.next.val;
cur.next.next.prev = cur;
cur.next = cur.next.next;
--sz;
return res;
}
public int popBack() {
if (sz == 0) return -1;
int res = tail.prev.val;
tail.prev.prev.next = tail;
tail.prev = tail.prev.prev;
--sz;
return res;
}
}
class Node {
int val = -1;
Node prev = null, next = null;
Node() {};
Node(int _val, Node _prev, Node _next) {
this.val = _val;
this.prev = _prev;
this.next = _next;
}
}
/**
* Your FrontMiddleBackQueue object will be instantiated and called as such:
* FrontMiddleBackQueue obj = new FrontMiddleBackQueue();
* obj.pushFront(val);
* obj.pushMiddle(val);
* obj.pushBack(val);
* int param_4 = obj.popFront();
* int param_5 = obj.popMiddle();
* int param_6 = obj.popBack();
*/
一种优化方法是额外一个指针指向中间节点,参见:https://leetcode.cn/problems/design-front-middle-back-queue/solutions/502014/she-ji-qian-zhong-hou-dui-lie-by-zerotrac2/?envType=daily-question&envId=2023-11-28 的方法二。
解法2——两个双端队列
参考官方题解的思想 和 0x3f的代码写的。
class FrontMiddleBackQueue {
// 左边的双端队列和右边的双端队列等长 或恰好大1。可以保证中间节点是左队列的结尾节点
Deque<Integer> left = new ArrayDeque<>(), right = new ArrayDeque<>();
public FrontMiddleBackQueue() {
}
public void pushFront(int val) {
left.addFirst(val);
balance();
}
public void pushMiddle(int val) {
if (left.size() > right.size()) right.offerFirst(left.pollLast());
left.offerLast(val);
}
public void pushBack(int val) {
right.offerLast(val);
balance();
}
public int popFront() {
if (left.isEmpty()) return -1;
int res = left.pollFirst();
balance();
return res;
}
public int popMiddle() {
if (left.isEmpty()) return -1;
int res = left.pollLast();
balance();
return res;
}
public int popBack() {
if (left.isEmpty()) return -1;
int res = right.isEmpty()? left.pollLast(): right.pollLast();
balance();
return res;
}
// 保持两个队列的相对大小
public void balance() {
if (left.size() > right.size() + 1) {
right.offerFirst(left.pollLast());
} else if (left.size() < right.size()) {
left.offerLast(right.pollFirst());
}
}
}
/**
* Your FrontMiddleBackQueue object will be instantiated and called as such:
* FrontMiddleBackQueue obj = new FrontMiddleBackQueue();
* obj.pushFront(val);
* obj.pushMiddle(val);
* obj.pushBack(val);
* int param_4 = obj.popFront();
* int param_5 = obj.popMiddle();
* int param_6 = obj.popBack();
*/
2336. 无限集中的最小数字
https://leetcode.cn/problems/smallest-number-in-infinite-set/description/?envType=daily-question&envId=2023-11-29
解法1——维护最小变量mn 和 哈希表维护已经去掉的数字
维护最小变量mn,哈希表记录已经去除的数字。
当新添加数字时,如果更小,则更新 mn 变量。
class SmallestInfiniteSet {
int mn = 1;
Set<Integer> mv = new HashSet<>();
public SmallestInfiniteSet() {
}
public int popSmallest() {
int res = mn;
mv.add(mn);
while (mv.contains(mn)) mn++;
return res;
}
public void addBack(int num) {
if (mv.contains(num)) {
mv.remove(num);
if (num < mn) mn = num;
}
}
}
/**
* Your SmallestInfiniteSet object will be instantiated and called as such:
* SmallestInfiniteSet obj = new SmallestInfiniteSet();
* int param_1 = obj.popSmallest();
* obj.addBack(num);
*/
解法2——维护原本可用的最小值 和 有序集合维护后期添加的数值👌
去除时 是 去除最小的。
添加时 也只能添加 当前没有的,也是小的。
用一个变量维护上界,用一个有序集合维护新加的可用小数据。
class SmallestInfiniteSet {
private int thres;
private TreeSet<Integer> set;
public SmallestInfiniteSet() {
thres = 1;
set = new TreeSet<Integer>();
}
public int popSmallest() {
if (set.isEmpty()) {
int ans = thres;
++thres;
return ans;
}
int ans = set.pollFirst();
return ans;
}
public void addBack(int num) {
if (num < thres) {
set.add(num);
}
}
}
1657. 确定两个字符串是否接近(理解操作本质)⭐
https://leetcode.cn/problems/determine-if-two-strings-are-close/description/?envType=daily-question&envId=2023-11-30
提示:
1 <= word1.length, word2.length <= 10^5
word1 和 word2 仅包含小写英文字母
https://leetcode.cn/problems/determine-if-two-strings-are-close/solutions/2547579/li-jie-cao-zuo-ben-zhi-jian-ji-xie-fa-py-b18i/?envType=daily-question&envId=2023-11-30
class Solution {
public boolean closeStrings(String word1, String word2) {
if (word1.length() != word2.length()) return false;
int sMask = 0, tMask = 0;
int[] sCnt = new int[26], tCnt = new int[26];
for (char ch: word1.toCharArray()) {
sMask |= 1 << (ch - 'a');
sCnt[ch - 'a']++;
}
for (char ch: word2.toCharArray()) {
tMask |= 1 << (ch - 'a');
tCnt[ch - 'a']++;
}
Arrays.sort(sCnt);
Arrays.sort(tCnt);
return sMask == tMask && Arrays.equals(sCnt, tCnt);
}
}
2661. 找出叠涂元素(哈希表、计数统计)
https://leetcode.cn/problems/first-completely-painted-row-or-column/description/?envType=daily-question&envId=2023-12-01
提示:
m == mat.length
n = mat[i].length
arr.length == m * n
1 <= m, n <= 10^5
1 <= m * n <= 10^5
1 <= arr[i], mat[r][c] <= m * n
arr 中的所有整数 互不相同
mat 中的所有整数 互不相同
class Solution {
public int firstCompleteIndex(int[] arr, int[][] mat) {
int m = mat.length, n = mat[0].length;
// 记录位置信息
int[] c = new int[m * n + 1], r = new int[m * n + 1];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
r[mat[i][j]] = i;
c[mat[i][j]] = j;
}
}
// 计数统计
int[] cc = new int[n], rc = new int[m];
for (int i = 0; i < m * n; ++i) {
int v = arr[i], row = r[v], col = c[v];
cc[col]++;
rc[row]++;
if (cc[col] == m || rc[row] == n) return i;
}
return -1;
}
}
1094. 拼车(差分)
https://leetcode.cn/problems/car-pooling/description/?envType=daily-question&envId=2023-12-02
提示:
1 <= trips.length <= 1000
trips[i].length == 3
1 <= numPassengersi <= 100
0 <= fromi < toi <= 1000
1 <= capacity <= 10^5
用差分 表示 from 到 to 的范围内增加了多少人,然后再还原。
class Solution {
public boolean carPooling(int[][] trips, int capacity) {
int[] diff = new int[1001];
for (int[] t: trips) {
diff[t[1]] += t[0];
diff[t[2]] -= t[0];
}
int s = 0;
for (int i = 0; i < 1001; ++i) {
s += diff[i];
if (s > capacity) return false;
}
return true;
}
}
1423. 可获得的最大点数(滑动窗口)
https://leetcode.cn/problems/maximum-points-you-can-obtain-from-cards/description/?envType=daily-question&envId=2023-12-03
提示:
1 <= cardPoints.length <= 10^5
1 <= cardPoints[i] <= 10^4
1 <= k <= cardPoints.length
就是找到长度为 n - k ,和最小的窗口,答案是 sum - mn。
class Solution {
public int maxScore(int[] cardPoints, int k) {
int n = cardPoints.length, sum = 0, s = 0, mn = Integer.MAX_VALUE / 2;
if (k == n) return Arrays.stream(cardPoints).sum();
k = n - k;
for (int l = 0, r = 0; r < n; ++r) {
s += cardPoints[r];
sum += cardPoints[r];
if (r - l + 1 == k) {
mn = Math.min(mn, s);
s -= cardPoints[l++];
}
}
return sum - mn;
}
}