【航空和卫星图像中检测建筑物】使用gabor特征和概率的城市区域和建筑物检测研究(Matlab代码实现)

  

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

从甚高分辨率 (VHR) 航空和卫星图像检测建筑物在地图制作、城市规划和土地利用分析中非常有用。虽然可以从这些VHR图像中手动定位建筑物,但此操作可能不可靠且快速。因此,需要自动化系统从VHR航空和卫星图像中检测建筑物。不幸的是,这种系统必须处理重大问题。首先,建筑物具有不同的特征,它们的外观(照明,视角等)在这些图像中不受控制。其次,城市地区的建筑物通常密集而复杂。很难从它们中检测到单独的建筑物。为了克服这些困难,我们提出了一种使用局部特征向量和概率框架的新型建筑检测方法。我们首先介绍四种不同的局部特征向量提取方法。提取的局部特征向量用作要估计的概率密度函数 (pdf) 的观测值。使用可变核密度估计方法,我们估计相应的pdf。换句话说,我们将图像中的建筑物位置(待检测)表示为联合随机变量并估计它们的pdf。使用估计密度的模式以及其他概率属性,我们检测图像中的建筑物位置。我们还引入了基于概率框架的数据和决策融合方法来检测建筑物位置。我们挑选了VHR全色航空和Ikonos卫星图像的某些作物来测试我们的方法。我们假设这些作物是使用我们以前的城市区域检测方法检测的。我们的测试图像由两个不同的传感器采集,它们具有不同的空间分辨率。此外,这些图像中的建筑物具有不同的特征。因此,我们可以在不同的数据集上测试我们的方法。广泛的测试表明,我们的方法可用于在Ikonos卫星和我们的航空图像中以稳健和快速的方式自动检测建筑物。

原文摘要:

Abstract:

Detecting buildings from very high resolution (VHR) aerial and satellite images is extremely useful in map making, urban planning, and land use analysis. Although it is possible to manually locate buildings from these VHR images, this operation may not be robust and fast. Therefore, automated systems to detect buildings from VHR aerial and satellite images are needed. Unfortunately, such systems must cope with major problems. First, buildings have diverse characteristics, and their appearance (illumination, viewing angle, etc.) is uncontrolled in these images. Second, buildings in urban areas are generally dense and complex. It is hard to detect separate buildings from them. To overcome these difficulties, we propose a novel building detection method using local feature vectors and a probabilistic framework. We first introduce four different local feature vector extraction methods. Extracted local feature vectors serve as observations of the probability density function (pdf) to be estimated. Using a variable-kernel density estimation method, we estimate the corresponding pdf. In other words, we represent building locations (to be detected) in the image as joint random variables and estimate their pdf. Using the modes of the estimated density, as well as other probabilistic properties, we detect building locations in the image. We also introduce data and decision fusion methods based on our probabilistic framework to detect building locations. We pick certain crops of VHR panchromatic aerial and Ikonos satellite images to test our method. We assume that these crops are detected using our previous urban region detection method. Our test images are acquired by two different sensors, and they have different spatial resolutions. Also, buildings in these images have diverse characteristics.Therefore, we can test our methods on a diverse data set. Extensive tests indicate that our method can be used to automatically detect buildings in a robust and fast manner in Ikonos satellite and our aerial images.

甚高分辨率(VHR)航空和卫星图像提供了有价值的信息。特别是,从这些图像中检测建筑物需要特别考虑,因为这些信息可用于多种遥感应用,例如自动地图制作、城市规划和土地利用分析。不幸的是,出于多种原因,人类专家在给定的航空或卫星图像中手动标记建筑物是乏味的。首先,可以从不同的视角对建筑物进行成像。它们可能没有唯一的表示形式。其次,建筑物可能与环境有复杂的相互作用(例如树木的遮挡)。此外,它们可能会相互遮挡。第三,图像中的照明和对比度可能不足以可靠地检测建筑物。第四,这些图像可能覆盖了大片地理区域,其中有许多建筑物。分析图像可能需要一些时间。最后,建筑物没有标准的大小和形状。因此,在VHR航空和卫星图像上开发鲁棒且快速的建筑检测算法已成为必要。

在过去的二十年中,研究人员开发了使用航空和卫星图像的自动建筑检测方法。在航空和卫星图像中对建筑物检测有很好的评论[23],[38]。有兴趣的读者可以从这些研究中获得有关大多数自动化建筑检测方法的详细信息。接下来,我们总结了最近引入的建筑检测方法,重点介绍了与本文所提出的方法相关的方法。Kim和Muller[17]使用图论来检测航空图像中的建筑物。他们提取给定图像中的线性特征,并将它们用作图形的顶点。然后,他们通过将子图与模型建筑图进行匹配来提取建筑物。最后,他们使用强度和阴影信息来验证建筑物的外观。与我们不同的是,他们使用彩色航拍图像和线性特征。Krishnamachari和Chellappa[18]在航空图像中引入了一种基于马尔可夫随机场(MRF)的建筑物检测方法。它们受益于图像中的直线段,并在相互作用上形成基于MRF的检测方法。与我们的系统相比,这个系统更复杂。Segl和Kaufmann [29]以迭代方式将监督形状分类与无监督图像分割相结合。他们的方法允许在高分辨率卫星图像中搜索小物体(如建筑物)。Molinier等人[25]考虑通过训练自组织地图来检测卫星图像中人造结构的边界。Gamba等人[11]使用边界信息提取城市区域的地图。他们将边界和非边界数据提供给两个不同的分类器。然后,他们将结果结合起来,在VHR图像上检测城市地区的建筑物。在这些研究中,总是需要一个训练集。Benediktsson等人[6]使用数学形态学运算来提取结构信息,以检测卫星图像中的城市区域。此方法可用于检测影像中的建筑物。Ünsalan和Boyer[38]研究了多光谱卫星图像,以检测居民区的建筑物和街道网络。他们的方法使用植被指数,聚类,分解二进制图像和图论。虽然这种方法很有前途,但需要多光谱信息来检测建筑物。Akçay和Aksoy [1]还提出了一种在高分辨率卫星图像中进行无监督分割和目标检测的新方法。这种方法还需要多光谱信息。Idrissa等人[13]使用Gabor滤波器和SPOT5图像中的归一化差异植被指数提取人造结构(建筑物和道路)的边缘。通过比较从同一区域拍摄的两个图像序列的边缘,他们还检测到了变化。与我们不同,他们受益于多光谱信息。在最近的一项研究中,我们引入了一种使用尺度不变特征变换(SIFT)关键点和图论形式化来检测全色Ikonos卫星图像中建筑物的方法[32]。此方法给出了良好的结果,但它的计算负载很高。它还依赖于模板构建图像作为训练集。在类似的框架中,Xiong和Zhang[41]使用兴趣点进行卫星图像匹配。还有各种研究侧重于航空和卫星图像中的建筑物形状提取[5],[11],[15],[16],[40]。与建筑物检测相比,这是一个更复杂的问题。但是,检测建筑物位置可能有助于从图像中提取建筑物形状。

📚2 运行结果

放大: 

 

 

放大: 

 

放大图:

部分代码:

%
    % INPUT
    % =====
    % im     : the graylevel image
    %
    % OUTPUT
    % ======
    % points : the interest points extracted
    %
    % REFERENCES
    % ==========
    % C.G. Harris and M.J. Stephens. "A combined corner and edge detector",
    % Proceedings Fourth Alvey Vision Conference, Manchester.
    % pp 147-151, 1988.
    %
    % Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department
    % of Engineering Science, Oxford University 1989, p45.
    %
    % C. Schmid, R. Mohrand and C. Bauckhage, "Evaluation of Interest Point Detectors",
    % Int. Journal of Computer Vision, 37(2), 151-172, 2000.
    %
    % EXAMPLE
    % =======
    % points = kp_harris(im)

    % only luminance value
    im = double(im(:,:,1));
    sigma = 1.5;

    % derivative masks
    s_D = 0.7*sigma;
    x  = -round(3*s_D):round(3*s_D);
    dx = x .* exp(-x.*x/(2*s_D*s_D)) ./ (s_D*s_D*s_D*sqrt(2*pi));
    dy = dx';

    % image derivatives
    Ix = conv2(im, dx, 'same');
    Iy = conv2(im, dy, 'same');

    % sum of the Auto-correlation matrix
    s_I = sigma;
    g = fspecial('gaussian',max(1,fix(6*s_I+1)), s_I);
    Ix2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image derivatives
    Iy2 = conv2(Iy.^2, g, 'same');
    Ixy = conv2(Ix.*Iy, g, 'same');

    % interest point response
%    cim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps);                % Alison Noble measure.
     %k=0.31;
     %k=0.26;
     %k=0.21;
     %k=0.16;
     %k=0.11; 
     k=0.06;
     %k=0.01;
     %k=0.001; 
     cim = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2;    % Original Harris measure.

    % find local maxima on 3x3 neighborhood
    [r,c,max_local] = findLocalMaximum(cim,3*s_I);

    % set threshold 1% of the maximum value
%    t = 0.01*max(max_local(:));
    t = 0.1*max(max_local(:));

    % find local maxima greater than threshold
    [r,c] = find(max_local>=t);

    % build interest points
    points = [r,c];
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]B. Sirmacek and C. Unsalan, "A Probabilistic Framework to Detect Buildings in Aerial and Satellite Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 1, pp. 211-221, Jan. 2011, doi: 10.1109/TGRS.2010.2053713.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/22848.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何把数据从 TDengine 2.x 迁移到 3.x ?

一.迁移背景: 随着时序数据库(Time Series Database) TDengine 3.0 的发布至今,我们除了在持续地优化产品质量的本身,也一直在努力地提升用户体验。但由于 3.0 底层有大量的重构优化,导致开源版的 2.0 用户…

免费部署你的私人 ChatGPT 网页应用

免费部署你的私人 ChatGPT 网页应用 1、注册Github账号,拷贝仓库 第一步、打开GitHub官网,点击右上角Sign up注册即可 第二步、打开开源项目【Chatgpt-next-web】,点击fork,点击Create fork完成操作 2、选择免费的容器【vercel】或者【r…

2023新版Spring6全新讲解-核心内容之IoC

Spring核心之IoC 一、IoC概念介绍 1.IoC 介绍 IoC 是 Inversion of Control 的简写,译为“控制反转”,它不是一门技术,而是一种设计思想,是一个重要的面向对象编程法则,能够指导我们如何设计出松耦合、更优良的程序。…

USB摄像头描述符参数获取和来源分析

USB摄像头描述符参数获取和来源分析 文章目录 USB摄像头描述符参数获取和来源分析描述符USB设备描述符描述符 USB摄像头参数获取myuvc.c结果device descriptor设备描述符configuration descriptor配置描述符interface association接口关联inteface desciptor atsettingvideocon…

Linux :: 【基础指令篇 :: 用户管理:(2)】::设置用户密码(及本地Xshell 登录云服务器操作演示) :: passwd

前言:本篇是 Linux 基本操作篇章的内容! 笔者使用的环境是基于腾讯云服务器:CentOS 7.6 64bit。 目录索引: 1. 基本语法 2. 基本用法 3. 注意点 4. 补充:指定用户设置密码操作实例测试及登录本地 Xshell 登录演…

前端微服务无界实践 | 京东云技术团队

一、前言 随着项目的发展,前端SPA应用的规模不断加大、业务代码耦合、编译慢,导致日常的维护难度日益增加。同时前端技术的发展迅猛,导致功能扩展吃力,重构成本高,稳定性低。因此前端微服务应运而生。 前端微服务优势…

什么是智慧校园?

什么是智慧校园? 智慧校园平台是目前教育信息化领域的热点之一。 随着数字化转型的加速,越来越多的学校开始寻求解决方案,以提高教育管理的效率和质量。 在使用智慧校园平台的过程中,一些痛点问题也浮现出来。为解决这些问题&a…

10 工具Bootchart的使用(windows)

Bootchart的使用方法(windows) 下载bootchart.jar并拷贝到windows, 然后保证windows也安装了open jdk 1.8; 下载地址:https://download.csdn.net/download/Johnny2004/87807973 打开设备开机启动bootchart的开关: adb shell touch /data/boo…

DID-M3D 论文学习

1. 解决了什么问题? 单目 3D 检测成本低、配置简单,对一张 RGB 图像预测 3D 空间的 3D 边框。最难的任务就是预测实例深度,因为相机投影后会丢失深度信息。以前的方法大多直接预测深度,本文则指出 RGB 图像上的实例深度不是一目了…

【学习日记2023.5.22】 之 套餐模块完善

4. 功能模块完善之套餐模块 4.1 新增套餐 4.1.1 需求分析与设计 产品原型 后台系统中可以管理套餐信息,通过 新增功能来添加一个新的套餐,在添加套餐时需要添加套餐对应菜品的信息,并且需要上传套餐图片。 新增套餐原型: 当填…

自动化如何做?爆肝整理企业自动化测试工具/框架选择实施,你要的都有...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Python自动化测试&…

web基础与HTTP协议

web基础与HTTP协议 一、域名概述二、网页的概念三、HTML四、web概述静态网页:动态页面动态页面与静态页面的区别 五、HTTP 一、域名概述 域名的概念:IP地址不易记忆 早期使用Hosts文件解析域名 – 主机名称重复 – 主机维护困难 DNS(域名系…

大学4年做出来这个算不算丢人

前言:相信看到这篇文章的小伙伴都或多或少有一些编程基础,懂得一些linux的基本命令了吧,本篇文章将带领大家服务器如何部署一个使用django框架开发的一个网站进行云服务器端的部署。 文章使用到的的工具 Python:一种编程语言&…

开发者关系工程师如何帮助开发者在Sui上构建

近期,我们与Sui开发者关系负责人Brian Hennessey-Hsien进行了对话,就Sui上的开源、去中心化和开发者成就等话题展开讨论。 日前,我们采访了Sui基金会的开发者关系负责人Brian Hennessey-Hsieh,共同探讨了其对于Web3中开发者发展历…

2009.03-2022.06华证ESG季度评级(季度)

2009.03-2022.06华证ESG评级(季度) 1、时间:2009.03-2022.06.15 2、来源:整理自Wind 3、指标:华证ESG(只有综合评级,无细分评级数据) 4、样本数量:A股4800多家公司 …

【数据安全-02】AI打假利器数字水印,及java+opencv实现

AIGC 的火爆引燃了数字水印,说实话数字水印并不是一项新的技术,但是这时候某些公司拿出来宣传一下特别应景,相应股票蹭蹭地涨。数字水印是什么呢,顾名思义,和我们在pdf中打的水印作用差不多,起到明确版权、…

拉货搬家货运APP开发分析和功能列表

作为国家经济发展的重要基础设施,物流行业正在面对转型升级的风口。巨大的市场体量,也迎来了激烈的市场竞争。为了从同质化的服务中脱颖而出,开拓更大的市场,并且解决线下司机的载货痛点,货运APP的开发必不可少。 开发…

firewalld防火墙

firewalld防火墙 1:firewalld概述 firewalld防火墙是Centos7系统默认的防火墙管理工具,取代了之前的iptables防火墙,也是工作在网络层,属于包过滤防火墙。firewalld和iptables都是用来管理防火墙的工具(属于用户态&a…

学习如何将Jenkins与UI测试报告完美整合,事半功倍,轻松获取高薪职位!

目录 引言 (一)在本地整合出报告 1.在cmd分别安装pytest和allure-pytest 2.进入需要执行的代码所在的路径 3.运行测试报告,代码如下 4.解析此json文件,代码如下(新打开cmd进入路径) 5.打开此HTML文件…

在CTEX文档生成中使用WinEit编辑带有公式符号的中文文档应用举例

CTEX文档生成中使用WinEit编辑带有公式符号的中文文档应用举例 CTEX在编辑文档格式和排版时具有优秀的性能,可批量处理文档格式,该用格式时候也非常快捷。下面举例介绍CTEX文档生成中怎样使用WinEit编辑带有公式符号的中文文档。 1.需要的代码 .在WinEi…