最新版本——Hadoop3.3.6单机版完全部署指南

538067752c84509357716d8eb723e6da.png

大家好,我是独孤风,大数据流动的作者。

本文基于最新的 Hadoop 3.3.6 的版本编写,带大家通过单机版充分了解 Apache Hadoop 的使用。本文更强调实践,实践是大数据学习的重要环节,也能在实践中对该技术有更深的理解,所以一些理论知识建议大家多阅读相关的书籍(都在资料包中)。

本文档版权归大数据流动所有,请勿商用,全套大数据、数据治理、人工智能相关学习资料,请关注大数据流动。

(本文所使用资料包位置: 大数据流动 VIP 知识库 》大数据技术 》Apache Hadoop 3.3.6 单机安装包)

一、Hadoop 概述

Apache Hadoop 是一个开源框架,用于存储和处理大规模数据集。它是用 Java 编写的,并支持分布式处理。Hadoop 的关键特点包括:

  1. 分布式存储:通过 Hadoop 分布式文件系统(HDFS),它可以跨多个节点存储大量数据,提供高可靠性和数据冗余。

  2. 分布式计算:Hadoop 使用 MapReduce 编程模型来并行处理大数据,这样可以有效地处理和分析存储在 HDFS 中的大规模数据集。

  3. 可扩展性:Hadoop 能够通过添加更多节点来轻松扩展,处理更大量的数据。

  4. 容错性:Hadoop 设计中考虑到了故障的可能性,能够在节点故障时继续运行,确保数据不丢失。

5. 生态系统:Hadoop 的生态系统包括各种工具和扩展(如 Hive、HBase、Spark 等),用于数据处理、分析和管理。

Hadoop 广泛应用于大数据分析、数据挖掘、日志处理等领域,特别是在需要处理 PB 级别数据的场景中非常有效。

所以我们可以理解为 Hadoop 是一个生态,有了 Hadoop 为基础,后续的 Spark,Flink 等组件才相继出现,让大数据技术持续的发展。

4de56e62c5e4ef7e25fea171b43d20f5.png

而从软件角度,Hadoop 本身自己是一个 Apache 的开源软件。

db6fb49cb3b71b9ca60a5f47b04fa0d8.png

Apache Hadoop 主要由以下几个核心组件组成,每个组件都有其独特的功能:

1. Hadoop Common:这是 Hadoop 的基础库集合,提供了 Hadoop 模块所需要的通用工具和接口。它包括文件系统、操作系统级别的抽象,以及必要的 Java 库文件。

  1. Hadoop MapReduce (MR):这是一个编程模型,用于处理大规模数据集的分布式计算。MapReduce 将作业分成两个阶段:Map(处理)和 Reduce(汇总)。这种方法使得并行处理大数据变得简单有效。

  2. Hadoop YARN (Yet Another Resource Negotiator):YARN 是 Hadoop 的资源管理和任务调度器。它将计算资源管理和作业调度功能从 MapReduce 中分离出来,提高了 Hadoop 的灵活性和可扩展性。

  3. Hadoop Distributed File System (HDFS):HDFS 是一个高度容错的分布式文件系统,设计用来存储大量数据。它可以在廉价的硬件上运行,提供高吞吐量以访问应用程序数据,并适用于具有大数据集的应用程序。

这些组件协同工作,使 Hadoop 成为一个强大的工具,用于存储、处理和分析大规模的数据集。

cea094a1b6ced98f2b99f00e7e19baf1.png

而 Common 是基础库,MapReduce 由于性能问题,分布式计算已经被更高效的 Spark,Flink 等计算引擎替代。

但是HDFS,YARN依然是最核心的两个组件,一定要认真学习,我也会单独发文章来学习这两个组件。

31650bf03cddeb48344d5ea4e144c95d.png

016fb4d32de6e7ba853a12925cff3ad4.png

d0147438f13591c699240e872a4d7442.png

31ba775920ca3a505a7bcab3e9e80d6b.png

二、Hadoop 历史

当然,以下是用 Markdown 格式概述 Apache Hadoop 的历史:

  • 2005 年 - 起源由 Doug Cutting 和 Mike Cafarella 创立,受 Google 的 MapReduce 和 GFS 论文启发。

    (Google 三篇理论中文版资料位置: 大数据流动 VIP 知识库 》大数据技术 》Google 三家马车)

  • 2006 年 - 加入Apache成为 Apache 软件基金会的一部分,最初是 Lucene 项目的一部分,后来在 2008 年成为顶级项目。

  • 2008 年及以后 - 发展与普及快速获得关注,生态系统不断发展,增加了如 HBase、Hive 等工具。

  • 2011 年 - Hadoop 1.0 发布标志着 Hadoop 的成熟,稳定 API 和核心组件,包括 HDFS 和 MapReduce。

  • 2013 年 - Hadoop 2.0 和YARN的推出引入 YARN,将 Hadoop 从以 MapReduce 为中心的平台转变为更加多功能的数据处理平台。

  • 持续演进 - Hadoop 不断更新,扩展其功能和生态系统,包括 Spark、Kafka、Flink 等工具。

  • 云集成 - 近年来,与云服务集成,提供更灵活、可扩展的数据处理解决方案。

Hadoop 也不光只有 Apache Hadoop,很多公司都有自己的发行版本,不同的发行版针对不同的用途和场景进行了优化,用户可以根据自己的需求选择最适合的版本。随着时间的推移,这些发行版可能会有所变化,包括新的版本推出或旧版本停止维护。

除了 Apache Hadoop,还有 Cloudera 的 CDH(Cloudera Distribution Including Apache Hadoop)、Hortonworks Data Platform (HDP),也就是 CDH 和 Ambari,我也会在其他文章演示,本文我们带来 Apache Hadoop 的单机版本演示,Apache Hadoop 也是被使用最多的版本。

三、Hadoop 3.3.6 单机安装

下面我们进行 Hadoop3.3.6 的单机版安装。

1、版本情况与安装包准备

Apache Hadoop 的官网地址是 https://hadoop.apache.org/

我们在这里可以看到,最新的版本是 3.3.6,这也是 2023 年新发布的版本,各方面都做了很大的优化,本文也基于此版本进行演示。

d587df13ff4f5246cc5b8340450af460.png

我们使用的 Hadoop 版本是 3.3.6,可以在官方网站进行下载:

https://archive.apache.org/dist/hadoop/common/hadoop-3.3.6/

696MB 这个。

8fce21427c41b27d681c8259c074bbc7.png

2、服务器环境准备

不管是服务器和虚拟机环境的准备,大家都可以参考我之前的文章,在本地搭一个虚拟机,也可以去买一个现成的,这里不做赘述。

我们使用的 CentOS 版本是 7.8,可以通过下面的命令来查看版本。

cat /etc/redhat-release

6a67753d3607f9d3d1996847e6029d4f.png

CentOS7 的安装步骤基本一致,都可以参考本文档。

服务器需要做一下免密登陆设置,不然后面会有问题

ssh-keygen -t rsa -P ""

回车即可,随后复制密钥

cat ~/.ssh/id_rsa.pub > ~/.ssh/authorized_keys

可以验证一下

ssh bigdataflowing

正常会直接登录过去。

3、JDK 安装

先卸载系统自带的 java

rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps

上传安装包到服务器,安装包可在 Oracle 官网下载:https://www.oracle.com/java/technologies/downloads/

也可以用我的资料包里的。

jdk-8u221-linux-x64.tar.gz

建立文件夹。

mkdir /opt/jdk/

进入该文件夹,上传文件。

cd /opt/jdk/

a3e81d8f05193eec39ced43b03c2d547.png

解压安装包 tar -zxvf jdk-8u221-linux-x64.tar.gz

没有报错证明解压成功。

cf3597c616e98e8e051164301ee10987.png

随后我们把 JDK 配置到环境变量里就可以了。

vi /etc/profile

在最下面加入这两句,其实就是我们刚刚解压 jdk 的位置。

export JAVA_HOME=/opt/jdk/jdk1.8.0_221

export PATH=$PATH:$JAVA_HOME/bin

最后让环境变量生效

source /etc/profile

查看 java 版本验证一下,java -version 成功!

f4e94ff001197709e8707618870d11a5.png

这样我们这台机器就有 java 环境可用了。

4、Hadoop3.3.6 安装

有了 java 环境,hadoop 的依赖问题就解决了,可以直接进行安装。

将之前准备好的 hadoop 安装包,上传到 /opt/hadoop3.3.6 目录下

解压,tar -zxvf hadoop-3.3.6.tar.gz 没报错就是成功。

dec05f8ea4f5838e6b1135165292bf30.png

还是增加环境变量

vi /etc/profile

在最下面加入这三句,hadoop 的位置

export HADOOP_HOME=/opt/hadoop3.3.6/hadoop-3.3. 6

export PATH=$PATH:$HADOOP_HOME/bin

export PATH=$PATH:$HADOOP_HOME/sbin

最后让环境变量生效

source /etc/profile

查看 java 版本验证一下,hadoop-version 成功!

abb7c185596c6ab649be3dee0260246c.png

使用 hadoop version 命令验证安装成功

926e11733ee6637a85794f5e8711eac8.png

5、配置

虽然安装成功,但是我们要使用的是单机伪集群,还需要进行一些配置。

hadoop 的目录有如下的文件夹

0946e7abb833a34b3380f4e64862b8b6.png

bin 目录:Hadoop 主服务脚本

etc 目录:Hadoop 的配置文件目录

lib 目录:存放 Hadoop 的本地库

sbin 目录:存放启动或停止 Hadoop 相关服务的脚本

首先进入 etc 配置文件夹 cd ``etc/hadoop 有如下配置,我们只修改核心的就可以。

cdc81f8fed357d2e629cf96988f3f472.png

首先修改 hadoop-env.sh 将 java 和 hadoop 的根路径加入

export JAVA_HOME=/opt/jdk/jdk1.8.0_221

export HADOOP_HOME=/opt/hadoop3.3.6/hadoop-3.3.6

同时加入 root 权限

export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

修改 core-site.xml

在 configuration 标签中,添加如下内容:

<property>
        <name>fs.defaultFS</name>
        <value>hdfs://bigdataflowing:9090</value>
    </property>

    <!-- 指定 hadoop 数据的存储目录 -->
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/opt/hadoop3.3.6/hdfs/tmp</value>
    </property>

    <property>
        <name>hadoop.proxyuser.root.hosts</name>
        <value>*</value>
    </property>

    <property>
        <name>hadoop.proxyuser.root.groups</name>
        <value>*</value>
    </property>

8ef30eb53797e8609bb50aa82f4a0d5f.png

修改 hdfs-site.xml,在 configuration 标签中,添加如下内容:

<property>
        <name>dfs.replication</name>      
        <value>1</value>
    </property>  

    <property>
        <name>dfs.namenode.name.dir</name>  
        <value>/opt/hadoop3.3.6/hdfs/name</value>  
        <final>true</final>
    </property>  

    <property>
        <name>dfs.datanode.data.dir</name>  
        <value>/opt/hadoop3.3.6/hdfs/data</value>  
        <final>true</final>
    </property>  

    <property>
        <name>dfs.http.address</name>
        <value>0.0.0.0:50070</value>
    </property>

    <property>
        <name>dfs.permissions</name>  
        <value>false</value>
    </property>

c89f668d36fefe12c20e9b3d7d416fbc.png

修改 mapre-site.xml,在 configuration 标签中,添加如下内容:

<property>
     <name>mapreduce.framework.name</name>
     <value>yarn</value>
 </property>

0e29b212d30a90bc6179e09014fad4cb.png

修改 yarn-site.xml,在 configuration 标签中,添加如下内容:

<property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce_shuffle</value>
</property>

03179acfbcc0c186c79b8dbd0cb5bf18.png

6、启动

首先格式化 HDFS,也就是对 hdfs 做最基本的配置:

hdfs namenode -format

10a3d9766e961460e40b2bc2c7ac64c6.png

格式化完成。

随后我们进入 sbin 目录

cd /opt/hadoop3.3.6/hadoop-3.3.6/sbin/

b4103baf258a696ecd8da9e1cbcc37c7.png

这里脚本较多,我们可以选择启动全部

./start-all.sh

正常不会有报错,同时使用 jps 命令查看,会有 Datanode,ResourceManager,SecondaryNameNode,NameNode,NodeManager 五个进程。

ed57eb7410515effb169f227ae8436d7.png

另一个验证启动成功的方法,是访问 Hadoop 管理页面

http://IP:50070/

f37c85f9fa6b425c9b2297d76bf1545f.png

http://IP:8088/

ed8602726e68d6679d60374b90494573.png

这些页面的使用,我们会在后续 Hdfs,Yarn 等章节再详细讲解。

7、报错汇总

启动报错,未设置 root 用户

ERROR: but there is no HDFS_NAMENODE_USER defined. Aborting operation.
Starting datanodes
ERROR: Attempting to operate on hdfs datanode as root
ERROR: but there is no HDFS_DATANODE_USER defined. Aborting operation.
Starting secondary namenodes [bigdataflowing]
ERROR: Attempting to operate on hdfs secondarynamenode as root
ERROR: but there is no HDFS_SECONDARYNAMENODE_USER defined. Aborting operation.
Starting resourcemanager
ERROR: Attempting to operate on yarn resourcemanager as root
ERROR: but there is no YARN_RESOURCEMANAGER_USER defined. Aborting operation.
Starting nodemanagers
ERROR: Attempting to operate on yarn nodemanager as root
ERROR: but there is no YARN_NODEMANAGER_USER defined. Aborting operation。

启动报错,为进行免密登陆设置

localhost: Permission denied (publickey,password

更多【大数据、数据治理、人工智能知识分享】【开源项目推荐】【学习社群加入】,请关注大数据流动

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/227160.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业计算机服务器中了mallox勒索病毒如何处理,Mallox勒索病毒解密

随着计算机技术的不断发展&#xff0c;越来越多的企业利用网络来提高工作效率&#xff0c;但随之而来的网络安全威胁也在不断增加&#xff0c;各种勒索病毒种类不断增加&#xff0c;给企业的数据安全带来严重的威胁&#xff0c;影响企业的生产业务开展。近期&#xff0c;云天数…

微信小程序js数组对象根据某个字段排序

一、排序栗子 注: 属性字段需要进行转换,如String类型或者Number类型 //升序排序 首元素(element1)在前 降序则(element1)元素在后 data data.sort((element1, element2) >element1.属性 - element2.属性 ); 二、代码 Page({/*** 页面的初始数据*/data: {user:…

【Flink系列三】数据流图和任务链计算方式

上文介绍了如何计算并行度和slot的数量&#xff0c;本文介绍Flink代码提交后&#xff0c;如何生成计算的DAG数据流图。 程序和数据流图 所有的Flink程序都是由三部分组成的&#xff1a;Source、Transformation和Sink。Source负责读取数据源&#xff0c;Transformation利用各种…

idea本地调试hadoop 遇到的几个问题

1.DEA对MapReduce的toString调用报错&#xff1a;Method threw ‘java.lang.IllegalStateException‘ exception. Cannot evaluate org.apache.hadoop.mapreduc 解决方法&#xff1a;关闭 IDEA 中的启用“ tostring() ”对象视图 2.代码和hdfs路径都对的情况下&#xff0c;程序…

【EI会议征稿】第三届密码学、网络安全和通信技术国际会议(CNSCT 2024)

第三届密码学、网络安全和通信技术国际会议&#xff08;CNSCT 2024&#xff09; 2024 3rd International Conference on Cryptography, Network Security and Communication Technology 随着互联网和网络应用的不断发展&#xff0c;网络安全在计算机科学中的地位越来越重要&…

MySQL 中Relay Log打满磁盘问题的排查方案

MySQL 中Relay Log打满磁盘问题的排查方案 引言&#xff1a; MySQL Relay Log&#xff08;中继日志&#xff09;是MySQL复制过程中的一个重要组件&#xff0c;它用于将主数据库的二进制日志事件传递给从数据库。然而&#xff0c;当中继日志不断增长并最终占满磁盘空间时&…

5组10个共50个音频可视化效果PR音乐视频制作模板

我们常常看到的图形跟着音乐跳动&#xff0c;非常有节奏感&#xff0c;那这个是怎么做到的呢&#xff1f;5组10个共50个音频可视化效果PR音乐视频制作模板满足你的制作需求。 PR音乐模板|10个音频可视化视频制作模板05 https://prmuban.com/36704.html 10个音频可视化视频制作…

论文阅读——Deformable ConvNets v2

论文&#xff1a;https://arxiv.org/pdf/1811.11168.pdf 代码&#xff1a;https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch 1. 介绍 可变形卷积能够很好地学习到发生形变的物体&#xff0c;但是论文观察到当尽管比普通卷积网络能够更适应物体形变&#xff…

华为OD机试 - 攀登者2(Java JS Python C)

题目描述 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。 地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 例如:[0,1,2,4,3,1,0,0,1,2,3,1,2,1,0],代表如下图所示的地图,地图中有两个山脉位置分别为 1,2,3,4,5…

Qt 如何使用VTK显示点云

开发环境 ubuntu 20.04 VTK 8.2 编译VTK 下载源码 git clone --recursive https://gitlab.kitware.com/vtk/vtk.git 使用版本管理工具&#xff0c;切换版本到8.2 更改编译选项&#xff0c;这里使用cmake-gui进行配置 1、编译类型修改为Release 2、安装路径可以设置&#xf…

Appium 并行测试多个设备

一、前置说明 在自动化测试中&#xff0c;经常需要验证多台设备的兼容性&#xff0c;Appium可以用同一套测试运例并行测试多个设备&#xff0c;以达到验证兼容性的目的。 解决思路&#xff1a; 查找已连接的所有设备&#xff1b;为每台设备启动相应的Appium Server&#xff1b…

【头歌系统数据库实验】实验7 SQL的复杂多表查询-1

目录 第1关&#xff1a;求各颜色零件的平均重量 第2关&#xff1a;求北京和天津供应商的总个数 第3关&#xff1a;求各供应商供应的零件总数 第4关&#xff1a;求各供应商供应给各工程的零件总数 第5关&#xff1a;求重量大于所有零件平均重量的零件名称 第6关&#xff1…

字节开源的netPoll底层LinkBuffer设计与实现

字节开源的netPoll底层LinkBuffer设计与实现 为什么需要LinkBuffer介绍设计思路数据结构LinkBufferNodeAPI LinkBuffer读 API写 APIbook / bookAck api 小结 本文基于字节开源的NetPoll版本进行讲解&#xff0c;对应官方文档链接为: Netpoll对应官方文档链接 netPoll底层有一个…

IntelliJ IDEA开启git版本控制的简单教程

这篇文章想要分享一下怎么在IntelliJ IDEA开启版本控制&#xff0c;博主使用的是gitee&#xff0c;首先需要安装git&#xff0c;关于git的安装这里就不介绍了&#xff0c;很简单。 目录 创建git仓库 创建项目 开启版本控制 拉取项目 创建git仓库 首先&#xff0c;需要登录…

python 使用 AppiumService 类启动appium server

一、前置说明 在Appium的1.6.0版本中引入了AppiumService类&#xff0c;可以很方便的通过该类来管理Appium服务器的启动和停止。 二、操作步骤 import osfrom appium.webdriver.appium_service import AppiumService as OriginalServerfrom libs import pathclass AppiumSer…

office办公技能|ppt插件使用

PPT插件获取&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1BOmPioUKeY2TdC-1V-o3Vw 提取码&#xff1a;tdji 一、ppt插件介绍 PPT插件是一种可以帮助用户在Microsoft PowerPoint软件中添加各种额外功能和效果的应用程序。使用PPT插件可以让用户更加轻松地制作出专业、…

No Chromedriver found that can automate Chrome ‘x.x.xxxx‘的解决办法

一、前置说明 在使用Appium对Android设备自动化测试时&#xff0c;切换WebView时抛出异常&#xff1a; selenium.common.exceptions.WebDriverException: Message: An unknown server-side error occurred while processing the command. Original error: No Chromedriver foun…

12-07 周四 Pytorch 使用Visdom 进行可视化

简介 在完成了龙良曲的Pytroch视频课程之后&#xff0c;楼主对于pytroch有了进一步的理解&#xff0c;比如&#xff0c;比之前更加深刻的了解了BP神经网络的反向传播算法&#xff0c;梯度、损失、优化器这些名词更加熟悉。这个博客简要介绍一下在使用Pytorch进行数据可视化的一…

JAVA导出PDF(一)

思路一&#xff1a;直接导出pdf 使用freemarker和itext把html转pdf&#xff0c;存在中文乱码&#xff0c;宋体不识别&#xff0c;需下载simsun.ttc字体&#xff0c;空白占位符不识别等等问题&#xff0c;对前端依赖性较大&#xff0c;不推荐&#xff1b; 适用范围&#xff1a;…

使用Python实现爬虫IP负载均衡和高可用集群

做大型爬虫项目经常遇到请求频率过高的问题&#xff0c;这里需要说的是使用爬虫IP可以提高抓取效率&#xff0c;那么我们通过什么方法才能实现爬虫IP负载均衡和高可用集群&#xff0c;并且能快速的部署并且完成爬虫项目。 通常在Python中实现爬虫ip负载均衡和高可用集群需要一…