第四届“中国法研杯”司法人工智能挑战赛-刑期预测赛道三等奖方案

一、前言

本文将回顾第四届“中国法研杯”司法人工智能挑战赛-刑期预测算法赛道比赛。使用多任务预训练、然后进行微调的形式最终在比赛中取得了三等奖的成绩。

二、任务介绍

主办方在第一届“中国法研杯”比赛上提出了刑期预测任务,本届将针对往届刑期预测准确率不高的罪名进行专项研究,并提供更多维度信息(如省份、年份)进行帮助提升。

三、数据集与分析

3.1、数据集介绍

本任务技术评测使用的训练集、验证集、测试集由中国司法大数据院提供,包含大约40余万篇裁判文书的犯罪事实、本院认为、刑期、年份、省份信息。

3.2、数据分析

  • 长文本:从图中可见,数据文本序列较长,需考虑长文本输入问题。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sqiICQN0-1684392501970)(F:\weixin\imgs\image-20230518121449610.png)]

  • 刑期分布:在给出的数据集中,刑期分布在1~234个月区间内,且不是连续的,因此在建模时本文没有使用回归预测的方法,而是使用文本分类的方法。

  • 案由分布:从下图可见,案由分布极不均衡。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DDrh08vh-1684392501971)(F:\weixin\imgs\image-20230518122030651.png)]

  • 数据样例

    在比赛过程中,本文收集了往年的法研杯比赛数据集,通过正则等手段清洗获得了与本次比赛案由相同的数据,进行多任务预训练。

    往年数据清洗过滤后的数据样例,该数据用于多任务预训练:

{
    "caseCause": "故意伤害罪", 
    "justice": "贵州省平坝县人民检察院指控:2014年4月9日下午,被告人王某丁与其堂哥王4某(另案处理)假释驾驶大货车(贵×××××)准备到乐某镇大屯村拉砂,行至大屯村时与被害人王某乙相遇,王4某与王某乙因琐事发生矛盾,准备打架时被路人劝开,双方离开现场。之后,王4某打电话邀约王某乙打架,接着又打电话召集郑3某、艾1某雷、邱某(均另案处理)、。王3某王6某、王某丁与艾1某雷、邱某、郑3某等人聚集后,行至乐某商务宾馆门前大街上时,与被害人高某乙、王某乙、王某甲、李某等人相遇,王4某、王某丁等人就从郑3某驾驶的面包车上拿出杀高某乙系创伤性、失血性休克死亡;王某甲所受之伤为轻伤一级;王某乙所受之伤为轻伤二级;李某所受之伤为轻微伤。公诉机关认为,被告人王某丁伙同王4某等人××他人身体,致一人死亡,二人受轻伤,一人受轻微伤,其行为触犯了《中华人民共和国刑法》××××,犯罪事实清楚,证据确实、充分,应当以××罪追究其刑事责任。王某丁在共同犯罪中其次起次要作用,是从犯,依法应当从轻、减轻或者免除处罚;其到案后如实公式供述自己的罪行,是坦白,依法可从轻处罚。根据《中华人民共和国刑事诉讼法》××的规定,特对被告人王某丁提起公诉。请依法判处。", 
    "opinion": "", 
    "judge": 42
}

​ 本次比赛的数据样例,该数据用于微调阶段:

{
    "caseCause": "走私普通货物、物品罪", 
    "justice": "经审理查明,2015年4月8日15时许,被告人刘某经拱北口岸旅检现场无申报通道进境,无书面向海关申报,被海关关员截查。关员从其携带的手提袋内查获“ ”牌酵素液2瓶、“”牌面霜1瓶、“”牌沐浴乳1瓶、“”牌洗碗精1瓶、“”牌果味软糖3瓶、“”牌花洒1个。被告人刘某自述其为赚取带工费人携带上列货物过关。经闸口海关核定,上述货物偷逃应缴税额共计人民币。 另查明,被告人刘某因走私分别于2014年8月17日、10月7日被闸口海关给予行政处罚。", 
    "opinion": "本院认为,被告人刘某一年内曾因走私被给予二次行政处罚后,又逃避海关监管,走私普通货物入境,其行为已构成走私普通货物罪。公诉机关指控的事实、罪名成立,应予支持。被告人刘某归案后如实供述自己的罪行,可从轻处罚。根据被告人刘某的犯罪情节和悔罪表现,适用缓刑确实不致再危害社会,可以宣告缓刑。依照《中华人民共和国刑法》第一百五十三条第一款第(一)项、第六十七条第三款、第七十二条第一款、第三款、第七十三条第一款、第三款、第五十二条、第六十四条的规定,", 
    "province": "广东省", 
    "judge": 1
}

四、评价指标

给定样本的预测刑期 y i ′ y_i^{\prime} yi和真实刑期 y i y_i yi,当前样本的分数为:
score ⁡ i = { 1 , ∣ y i − y i ′ ∣ ⩽ 0.25 y i 0 , ∣ y i − y i ′ ∣ > 0.25 y i \operatorname{score}_i=\left\{\begin{array}{l} 1,\left|y_i-y_i^{\prime}\right| \leqslant 0.25 y_i \\ 0,\left|y_i-y_i^{\prime}\right|>0.25 y_i \end{array}\right. scorei={1,yiyi0.25yi0,yiyi>0.25yi
即预测刑期和真实刑期的偏离程度≤25%视为正确,否则视为错误。测试集最终准确率为所有样本分数的均值。

五、解决方案

5.1、多任务预训练

所谓多任务预训练指的是在预训练阶段不仅仅是做了MLM任务,还利用往年数据做了一个有监督的分类任务,这种做法的动机是让预训练任务尽可能的贴近下游的微调任务,具体多任务损失函数设计如下:
L o s s 总 = l o s s m l m + l o s s c l s Loss_总=loss_{mlm}+loss_{cls} Loss=lossmlm+losscls

5.2、多任务预训练代码实现:

考虑到文本序列较长,本文在预训练基模型选型上选用了Nezha模型。

代码:

class NezhaPreTraining(NeZhaPreTrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"seq_relationship"]

    def __init__(self, config):
        super().__init__(config)

        self.bert = NeZhaModel(config)
        self.cls = BertOnlyMLMHead(config)

        # 增加分类模块
        self.legal_cls = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def forward(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            head_mask=None,
            position_ids=None,
            inputs_embeds=None,
            labels=None,
            next_sentence_label=None,
    ):
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        sequence_output, pooled_output = outputs[:2]
        prediction_scores = self.cls(sequence_output)
        seq_relationship_score = self.legal_cls(pooled_output)

        outputs = (prediction_scores, seq_relationship_score,) + outputs[2:]

        total_loss = None
        if labels is not None and next_sentence_label is not None:
            loss_fct = nn.CrossEntropyLoss()
            # MLM损失
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
            # 分类损失
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, self.config.num_labels),
                                          next_sentence_label.view(-1))
            # 总损失
            total_loss = masked_lm_loss + next_sentence_loss
            outputs = (total_loss,) + outputs

        return outputs

5.3、微调

在比赛过程中,主要采用了两种模型结构实现微调,分别为Nezha+CNN、Nezha+LSTM和Nezha+Linear,下面直接上模型代码。

  • Nezha+CNN

    class NeZhaCNN(NeZhaPreTrainedModel):
        def __init__(self, config):
            super().__init__(config)
            self.num_labels = config.num_labels
            self.bert = NeZhaModel(config)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
            self.filter_num = 256
            self.filter_sizes = [3, 4, 5]
            self.convs = nn.ModuleList([nn.Conv2d(1, self.filter_num, (k, config.hidden_size)) for k in self.filter_sizes])
            self.fc_cnn = nn.Linear(self.filter_num * len(self.filter_sizes), self.config.num_labels)
            self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
            self.init_weights()
    
        @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
        def forward(
                self,
                input_ids=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None,
                inputs_embeds=None,
                labels=None,
        ):
    
            outputs = self.bert(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
            )
    
            last_hidden_state = outputs[0]
            x = last_hidden_state.unsqueeze(1)
            x = [F.relu(conv(x)).squeeze(3) for conv in self.convs]
            x = [F.max_pool1d(item, item.size(2)).squeeze(2) for item in x]
            x = torch.cat(x, 1)
            x = self.dropout(x)
            logits = self.fc_cnn(x)
            outputs = (logits,) + outputs[2:]
    
            if labels is not None:
                if self.num_labels == 1:
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), labels.view(-1))
                else:
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
                outputs = (loss,) + outputs
    
            return outputs  # (loss), logits, (hidden_states), (attentions)
    
  • Nezha+LSTM

    class NeZhaLSTM(NeZhaPreTrainedModel):
        def __init__(self, config):
            super(NeZhaLSTM, self).__init__(config)
            self.num_labels = config.num_labels
            self.bert = NeZhaModel(config)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
            self.lstm = []
            self.lstm_hidden_size = 512
            self.lstm_layers = 1
            self.lstm_dropout = 0.1
            for i in range(self.lstm_layers):
                self.lstm.append(nn.LSTM(config.hidden_size if i == 0 else self.lstm_hidden_size * 4, self.lstm_hidden_size,
                                         num_layers=1, bidirectional=True, batch_first=True).cuda())
            self.lstm = nn.ModuleList(self.lstm)
    
            self.classifier = nn.Linear(self.lstm_hidden_size * 2, self.config.num_labels)
    
            self.init_weights()
    
        @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
        def forward(
                self,
                input_ids=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None,
                inputs_embeds=None,
                labels=None,
        ):
    
            outputs = self.bert(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
            )
    
            last_hidden_state = outputs[0]
            for lstm in self.lstm:
                try:
                    lstm.flatten_parameters()
                except:
                    pass
                output, (h_n, c_n) = lstm(last_hidden_state)
            x = h_n.permute(1, 0, 2).reshape(input_ids.size(0), -1).contiguous()
            x = self.dropout(x)
            logits = self.classifier(x)
            outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
            if labels is not None:
                if self.num_labels == 1:
                    #  We are doing regression
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), labels.view(-1))
                else:
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
                outputs = (loss,) + outputs
    
            return outputs  # (loss), logits, (hidden_states), (attentions)
    
  • Nezha+Linear

    class NeZhaForSequenceClassification(NeZhaPreTrainedModel):
        def __init__(self, config):
            super().__init__(config)
            self.num_labels = config.num_labels
            self.bert = NeZhaModel(config)
            self.dropout = nn.Dropout(config.hidden_dropout_prob)
            self.classifier = nn.Linear(config.hidden_size, config.num_labels)
            self.init_weights()
    
        @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
        def forward(
                self,
                input_ids=None,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None,
                inputs_embeds=None,
                labels=None,
        ):
    
            outputs = self.bert(
                input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
            )
    
            pooled_output = outputs[1]
    
            pooled_output = self.dropout(pooled_output)
            logits = self.classifier(pooled_output)
    
            outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
    
            if labels is not None:
                if self.num_labels == 1:
                    #  We are doing regression
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), labels.view(-1))
                else:
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
                outputs = (loss,) + outputs
    
            return outputs  # (loss), logits, (hidden_states), (attentions)
    
    

5.4、Trick

  • FGM对抗训练

  • 模型融合

  • Focal Loss

六、评测性能

阶段性能
复赛阶段69.59
评审阶段74.22

六、总结

本文回顾了第四届“中国法研杯”司法人工智能挑战赛-刑期预测算法赛道比赛中的三等奖方案,使用多任务预训练和微调范式,并结合相关文本分类的上分trick优化nezha+CNN、nezha+LSTM和nezha+Linear三种结构模型,最终获得了不错的性能。

参考文献

比赛链接:http://data.court.gov.cn/pages/laic2021.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/22582.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(学习日记)AD学习 #1

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

Leetcode452. 用最少数量的箭引爆气球

Every day a Leetcode 题目来源:452. 用最少数量的箭引爆气球 解法1:排序 贪心 题解:用最少数量的箭引爆气球 我们首先随机地射出一支箭,再看一看是否能够调整这支箭地射出位置,使得我们可以引爆更多数目的气球。…

既然有了IP地址,为什么还需要MAC地址?两者到底有啥区别,深入分析后终于明白了!

在计算机网络中,IP地址和MAC地址是两个最基本的概念。IP地址在互联网中是用于标识主机的逻辑地址,而MAC地址则是用于标识网卡的物理地址。虽然它们都是用于标识一个设备的地址,但是它们的作用和使用场景是不同的。 IP地址是在网络层&#xff…

logstash同步数据从kafka到es集群

背景:需求是这样的,原始文件是txt文件(每天300个文件),最终想要的结果是每天将txt中的数据加载到es中,开始的想法是通过logstash加载数据到es中,但是对logstash不太熟悉,不知道怎么讲…

基于SpringBoot的生鲜管理系统的设计与实现

背景 困扰交易市场的许多问题当中,生鲜交易管理一定是交易市场不敢忽视的一块。但是管理好生鲜交易又面临很多麻烦需要解决,例如有几个方面:第一,生鲜市场往往人数都比较多,如何保证能够管理到每一个商家,如何在工作琐碎,记录繁多的情况下将生鲜交易的当前情况反应给领导相关部…

柔顺机构学读书笔记1:悬臂梁变形

题目: 如图考虑悬臂梁,材料各向同性,即各个方向上的弹性模量和强度都相同。如果在x方向上作用一个可使最大应力等于屈服强度 S S S的力 F x F_x Fx​时, x x x轴方向的变形为多少,书上给出了答案: 我们来验…

2022级云曦实验室考试(一)pwn

讲真,俺都不知道pwn是啥,等俺搜搜! pwn简介: CTF中的pwn指的是通过通过程序本身的漏洞,编写利用脚本破解程序拿到主机的权限,这就需要对程序进行分析,了解操作系统的特性和相关漏洞&#xff0…

SHELL——流程控制条件判断

1、判断当前磁盘剩余空间是否有20G,如果小于20G,则将报警邮件发送给管理员,每天检查一次磁盘剩余空间。 2、判断web服务是否运行 1)、查看进程的方式判断该程序是否运行 2)、通过查看端口的方式判断该程序是否运行&am…

数据分析真的很火吗?真的有很多企业需要这样的岗位吗?求大佬指点。

“我是去年毕业的,因为疫情影响,整个就业环境都很不好,很多企业都裁员了。加上疫情三年基本都是玩过去,也没啥一技之长,就业就更难了。听说现在做数据分析的人很多,我身边的朋友都在转行做数据分析。 其实…

【C++】哈希——unordered系列容器哈希概念哈希冲突

文章目录 1. unordered系列的关联式容器1.1 引言1.2 unordered_map的使用说明1.3 unordered_set的使用说明1.4 unordered_set和unordered_map的应用1.5 性能比较 2. 哈希概念3. 哈希函数4. 哈希冲突5. 哈希冲突的解决——开散列和闭散列5.1 闭散列5.2 开散列 1. unordered系列的…

Elasticsearch:Explicit mapping - 显式映射

显式映射相比较动态映射(Dynamic mapping)是需要我们在索引创建时就定义字段及其类型。这个和我们传统的 RDMS 数据库一样,在我们写入数据到数据库之前,我们需要工整地定义好每个字段及其类型和长度。Elasticsearch 既可以使用显式…

使用柔性数组重写MyString

hello,各位宝子,今天阿崽将使用c和柔性数组的方式重新去写String类 在开始本次知识前,首先给大家介绍下柔性数组这个buff特点: 结构中的柔性数组成员前面至少要包含一个其他成员 sizeof返回的这种结构大小不包括柔性数组的内存 …

数据结构课程设计——哈夫曼编/译码器

数据结构课程设计任务书 学生姓名: 专业班级:软件工程 指导教师: 工作单位: 题 目: 哈夫曼编/译码器 基础要求: (1)熟悉各种…

数字信号处理基础(二):FFT和IFFT的使用以及详细分析代码书写思路

目录 1. fft和ifft的原理1.1 fft1.2 ifft 2. 书写代码思路3. 完整代码4. 结果图 1. fft和ifft的原理 1.1 fft fft是快速傅里叶变换,是MATLAB中计算信号频谱的函数,使用方法是fft(x),直接对信号x进行fft计算。 由于fft函数计算信号的频谱是0…

vue3与vue2共存环境搭建

1、全局安装vue2 npm install vue-cli -g2、自行在任意位置创建一个文件夹,局部安装vue3 npm初始化 npm initnpm初始化 提示: 初始化后 出现文件package.json 如果没有初始化 会报错,且文件夹中不会新增内容 3、局部安装vue3 npm install …

宏工科技“全面”发力CIBF,助推电池智造“高效提质”

5月16-18日,第十五届中国国际电池技术展览会(CIBF2023)在深圳盛大举行。宏工科技携电池材料与电池匀浆领域的创新产品和系统解决方案精彩亮相。 据了解,宏工科技在新能源行业的业务涉及电池材料整线产线、电池匀浆、电池回收三个…

R语言实践——rWCVP入门

rWCVP入门 介绍1. 访问到WCVP1.1 方法一1.2 方法二(谨慎) 2. WCVP数据筛选2.1 关于按分类单元筛选的说明2.2 关于按分布区域筛选的说明 笔者实践 介绍 世界维管植物名录(WCVP)是维管植物物种的全球共识。它提供了科学已知的> …

【C语言】结构体指针

结构体指针 结构体基础知识注意对于成员的赋值 结构体指针指向结构体变量的指针结构体指针与结构体成员指针用结构体指针引用结构体成员 结构体 基础知识 初识结构体,可以先看这篇浅显易懂的文章结构体–基础篇 所谓结构体,是一组类型可以不同的相关变…

怎么把录音转文字?推荐你这三款工具

随着科技不断发展,录音转文字的技术也逐渐被广泛应用于各种场景中。其中最常见的一种就是会议记录。在日常工作中,会议是企业和组织中必不可少的一个环节,但在会议过程中的录音和记录往往需要花费大量的时间和精力。这个时候,我们…

基于MAC地址的ACL配置

基于MAC地址的ACL配置 【实验目的】 掌握基于MAC地址的标准ACL的配置。验证配置。 【实验拓扑】 实验拓扑如图1所示。 图1 实验拓扑 设备参数如表所示。 表1 设备参数表 设备 接口 IP地址 子网掩码 默认网关 S1 e0/0 N/A N/A N/A e0/1 N/A N/A N/A PC1 N/…