本文仅供学习使用
本文参考:
B站:DR_CAN
Dr. CAN学习笔记-数学基础Ch0-6复数Complex Number
x 2 − 2 x + 2 = 0 ⇒ x = 1 ± i x^2-2x+2=0\Rightarrow x=1\pm i x2−2x+2=0⇒x=1±i
- 代数表达:
z
=
a
+
b
i
,
R
e
(
z
)
=
a
,
I
m
(
z
)
=
b
z=a+bi,\mathrm{Re}\left( z \right) =a,\mathrm{Im}\left( z \right) =b
z=a+bi,Re(z)=a,Im(z)=b, 分别称为
实部
与虚部
- 几何表达:
z
=
∣
z
∣
cos
θ
+
∣
z
∣
sin
θ
i
=
∣
z
∣
(
cos
θ
+
sin
θ
i
)
z=\left| z \right|\cos \theta +\left| z \right|\sin \theta i=\left| z \right|\left( \cos \theta +\sin \theta i \right)
z=∣z∣cosθ+∣z∣sinθi=∣z∣(cosθ+sinθi)
- 指数表达: z = ∣ z ∣ e i θ z=\left| z \right|e^{i\theta} z=∣z∣eiθ
z 1 = ∣ z 1 ∣ e i θ 1 , z 2 = ∣ z 2 ∣ e i θ 2 ⇒ z 1 ⋅ z 2 = ∣ z 1 ∣ ∣ z 2 ∣ e i ( θ 1 + θ 2 ) z_1=\left| z_1 \right|e^{i\theta _1},z_2=\left| z_2 \right|e^{i\theta _2}\Rightarrow z_1\cdot z_2=\left| z_1 \right|\left| z_2 \right|e^{i\left( \theta _1+\theta _2 \right)} z1=∣z1∣eiθ1,z2=∣z2∣eiθ2⇒z1⋅z2=∣z1∣∣z2∣ei(θ1+θ2)
共轭: z 1 = a 1 + b 1 i , z 2 = a 2 − b 2 i ⇒ z 1 = z ˉ 2 z_1=a_1+b_1i,z_2=a_2-b_2i\Rightarrow z_1=\bar{z}_2 z1=a1+b1i,z2=a2−b2i⇒z1=zˉ2