决战排序之巅(一)

决战排序之巅

    • 插入排序
      • 直接插入排序 void InsertSort(int* arr, int n)
      • 希尔排序 void ShellSort(int* arr, int n)
      • 测试插入排序
        • 测试函数 void verify(int* arr, int n)
        • 测试 InsertSort
        • 测试 ShellSort
        • 测试速度 InsertSort & ShellSort
    • 选择排序
      • 直接选择排序 void SelectSort(int* arr,int n)
      • 堆排序 void HeapSort(int* arr,int n)
        • 堆向下调整 void HeapDown(int* arr, int father,int size)
        • 堆排序 void HeapSort(int* arr,int n)
      • 测试选择排序
        • 测试 SelectSort
        • 测试 HeapSort
        • 测试速度 SelectSort & HeapSort
    • 希尔 VS 堆排 (Debug版本)
      • 说明
      • 1w rand( ) 数据测试
      • 10w rand( ) 数据测试
      • 10w rand( ) + i 数据测试
      • 100w rand( ) 数据测试
      • 100w rand( ) + i 数据测试
      • 1000w rand( ) 数据测试
      • 1000w rand( ) + i 数据测试
      • 测试代码如下:
    • 结语

欢迎来到决战排序之巅栏目,
本期我们将带来 插入排序(希尔) 与 选择排序(堆排) 的实现与比较

请添加图片描述
排序要常用的Swap函数(交换两个数值)

void Swap(int* a, int* b)
{
	int tmp = *a;
	*a = *b;
	*b = tmp;
}

插入排序

直接插入排序 void InsertSort(int* arr, int n)

基本思想:把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列。
插入流程如下所示:

当插入第i (i>=1)个元素时,前面的arr[0],arr[1],…,arr[i-1]已经排好序,此时用arr[i]的排序码arr[i-1],arr[i-2],…的排序码顺序进行比较,找到插入位置即将arr[i]插入,原来位置上的元素顺序后移。
代码如下:

void InsertSort(int* arr, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
		int end = i;
		while (end >= 0)
		{
			if (arr[end + 1] < arr[end])
			{
				Swap(&arr[end + 1], &arr[end]);
				end--;
			}
			else
			{
				break;
			}
		}
	}
}

直接插入排序分析
特性:元素集合越接近与有序,直接插入排序算法的时间效率越高。
时间复杂度:O(N^2)
空间复杂度:O(N)
稳定性:稳定

希尔排序 void ShellSort(int* arr, int n)

希尔排序法又称缩小增量法
希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后让堆gap重新取值,重复上述分组和排序的工作。当到达gap==1时,所有记录在统一组内排好序。
在这里插入图片描述
代码如下:

void ShellSort(int* arr, int n)
{
	int gap = n;
	while (gap > 1)
	{
		gap = gap / 3 + 1;

		for (int i = 0; i < n - gap; i++)
		{
			int end = i;
			while (end >= 0)
			{
				if (arr[end + gap] < arr[end])
				{
					Swap(&arr[end + gap], &arr[end]);
					end -= gap;
				}
				else
				{
					break;
				}
			}
		}
	}
}

希尔排序分析:
1.希尔排序是对直接插入排序的优化。
2.但gap > 1是程序对进行预排序,目的是使数组逐渐趋向于有序化,。当gap==1时数组就已经接近有序了,便可以很快的排好。对于整体而言,这样可以达到优化的效果。
3.希尔排序的gap取值有很多种取法,例如,最初Shell所提出的gap = [n/2] , gap = [gap/2],还有后来Knuth所提出的gap = [gap/3] + 1,还有人提出都取奇数,也有人提出各gap互质。但没有一种主张得到证明,因为Shell排序的时间度分析极其困难。在Knuth所著的**《计算机程序设计技巧》中利用大量试验资料得出,当n很大时,关键码平均比较次数和对象平均移动次数大约在 [ n 1.25 , 1.6 n 1.25 ] [ n^ {1.25} , 1.6n^{1.25}] [n1.25,1.6n1.25]范围内,这是 利用直接插入排序作为子序列方法 的情况下得到的。而我们以上代码的gap就是按照Knuth**提出的方式取值的。
稳定性:不稳定

测试插入排序

测试函数 void verify(int* arr, int n)
void verify(int* arr, int n)
{
	for (int i = 1; i < n; i++)
	{
		assert(arr[i] >= arr[i - 1]);
	}
}

以排非降序为例,若全为非降序则程序顺利通过,否则由assert函数终止程序并告知有误。

测试 InsertSort

我们先利用malloc开辟一个可存储10000个int类型的数组,再利用循环将数组内的数全置为随机数,再进行排序并检验。
在这里插入图片描述

我们运行后可以看到程序顺利通过,这说明测试成功,InsertSort正确无误。

测试 ShellSort

同理测试ShellSort.
在这里插入图片描述

可以看到ShellSort也是正确无误的。
测试代码:

void test_Sort()
{
	int n = 10000;
	int* arr = (int*)malloc(sizeof(int) * n); 
	assert(arr);
	for (int i = 0; i < n; i++)
	{
		arr[i] = rand();
	}
	ShellSort(arr, n);
	verify(arr, n);
}

int main()
{
	srand((unsigned int)time(NULL));
	test_Sort();
	return 0;
}
测试速度 InsertSort & ShellSort

先写一个numcreate函数来开辟空间。

int* numcreate(int n)
{
	int* arr = (int*)malloc(sizeof(int) * n);
	assert(arr);
	return arr;
}

开辟两个可储存10w int类型的数组,并利用rand( )函数为他们附上相同的值,再利用clock()函数来记录时间,最后比较即可。
在这里插入图片描述
我们可以看到插入排序用了5512μs,而希尔排序只用了13μs,所以恭喜ShellSort在速度上战胜了InsertSort,代码如下:

test()
{
	int n = 100000;
	int* arr1 = numcreate(n);
	int* arr2 = numcreate(n);

	for (int i = 0; i < n; i++)
	{
		arr2[i] = arr1[i] = rand();
	}

	int begin1 = clock();
	InsertSort(arr1, n);
	int end1 = clock();

	int begin2 = clock();
	ShellSort(arr2, n);
	int end2 = clock();

	printf("Insertsort : %d\n", end1 - begin1);
	printf("ShellSort  : %d\n", end2 - begin2);

	free(arr1);
	free(arr2);
}

选择排序

直接选择排序 void SelectSort(int* arr,int n)

基本思想:每次从待排数据中选出最小(最大)的值,再将其与起始位置的值交换,如此反复直到待排数据排完为止。
优化思路:每次选出最大值和最小值,最大值与待排数据末尾交换,最小值与待排数据起始位置交换,再反复循环即可。

实现步骤:
1.先确定数据开始位置begin与结束位置end
2.利用for循环找到[begin,end]区间的最大最小值,再分别交换,之后更新beginend
3.利用while循环来判断待排数据完成的条件
4.需要注意的是:当最大值为begin时,我们在交换时先交换了minibegin位置的数据,所以在进行maxiend前,我们要对maxi重新赋值,因为最大值被交换到了mini的位置,所以要maxi = mini

void SelectSort(int* a,int n)
{
	int begin=0,end=n-1;
	while(begin<end)
	{
		int maxi=begin,mini=end;
		for(int i=begin;i<=end;i++)
		{
			if(a[maxi]<a[i])
			{
				maxi=i;
			}
			if(a[mini]>a[i])
			{
				mini=i;
			}
		}
		Swap(&a[begin],&a[mini]);
		if(begin==maxi) 
		{
			maxi=mini;
		}
		Swap(&a[end],&a[maxi]);
		
		end--;
		begin++;
	}
}

直接选择排序分析:
特性:思路通俗易懂,但效率不高,且实际应用不高
时间复杂度:O(N^2)
空间复杂度:O(1)
稳定性:不稳定

堆排序 void HeapSort(int* arr,int n)

概念:堆排序是利用堆这种数据结构所设计的一种算法结构,通过逐个比较自身节点与左右子节点的大小来进行选择排序,这是选择排序的一种,它是通过堆来进行选择数据的。
方法:排升序建大堆,排降序建小堆。(本篇文章以排升序为例)
代码如下:

堆向下调整 void HeapDown(int* arr, int father,int size)

这里的size表示要调整数组的结束下标,father代表父节点即开始调整的位置,arr代表要调整的数组。

void HeapDown(int* arr, int father,int size)
{
	int child = father * 2 + 1;
	while (child < size)
	{
		if (child + 1 < size && arr[child + 1] > arr[child])
		{
			child++;
		}
		if (arr[father] < arr[child])
		{
			Swap(&arr[father], &arr[child]);
			father = child;
			child = child * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

先选出最大的子节点,在与父亲进行比较,若父节点小于子节点则进行交换,直到子节点要小于父节点的值,或者child>=size即子节点的下标值大于size结束下标的值就跳出循环。

堆排序 void HeapSort(int* arr,int n)

利用大堆的特性,堆顶一定为堆中的最大值,所以我们可以利用循环取出堆顶与堆中的最后一个数进行交换,在向下调整堆中 0 ~ n-1-i的数据位置,使得堆顶又重新变成下标为0~n-1-i 时的最大值,在依次循环,最后就排好了一个升序。
代码如下:

void HeapSort(int* arr, int n)
{
	int i = 0;
	for (i = (n - 1 - 1) / 2 ; i >=0 ; i--)
	{
		HeapDown(arr, i, n);
	}
	//建堆

	for (i = 0; i < n - 1 ; i++)
	{
		Swap(&arr[0], &arr[n - i - 1]);
		HeapDown(arr, 0, n - i - 1);
	}
	//排序
}

堆排序:
特点:堆排序利用堆来选择数据进行排序,这样效率就快很多了。
时间复杂度:O(N*logN)
空间复杂度:O(1)
稳定性:不稳定

测试选择排序

测试 SelectSort

相同的方法测试10w个 数据,成功。

测试 HeapSort

在这里插入图片描述
相同的方法测试100w个 数据,成功。

void test_Sort()
{
	int n = 1000000;
	int* arr = (int*)malloc(sizeof(int) * n); 
	for (int i = 0; i < n; i++)
	{
		arr[i] = rand();
	}
	HeapSort(arr, n);
	verify(arr, n);
}

int main()
{
	srand((unsigned int)time(NULL));
	test_Sort();
	return 0;
}

测试速度 SelectSort & HeapSort

希尔 VS 堆排 (Debug版本)

说明

以下会分别对1w,10w,100w,1000w的数据进行100次的排序比较,并计算出排一趟的平均值。

rand( ) 生成随机数:rand( )函数生成的随机数区间为[0 , 32767] , rand()在10w以上量级的数据中会有较多的重复项。
rand( ) + i 生成随机数:它可以有效地避免rand( )在10w以上量级生成区间的问题,但是随着 i 越大,它生成的整体来看是较为有序的。

介绍就到这里了,让我们来看看这100次排序中,谁才是你心目中的排序呢?
PS:100次只是一个小小的测试数据,有兴趣的朋友可以在自己电脑上测试更多的来比较哦。

1w rand( ) 数据测试

在这里插入图片描述

10w rand( ) 数据测试

在这里插入图片描述

10w rand( ) + i 数据测试

在这里插入图片描述

100w rand( ) 数据测试

在这里插入图片描述

100w rand( ) + i 数据测试

在这里插入图片描述

1000w rand( ) 数据测试

在这里插入图片描述

1000w rand( ) + i 数据测试

在这里插入图片描述

测试代码如下:

int* numcreate(int n)
{
	int* arr = (int*)malloc(sizeof(int) * n);
	assert(arr);
	return arr;
}

void Ultimate_Test()
{
	int n = 10000000, count = 100;
	int timeShell = 0, timeHeap = 0;
	for (int a = 0; a < count; a++)
	{
		int* arr1 = numcreate(n);
		int* arr2 = numcreate(n);
		for (int i = 0; i < n; i++) 
			arr1[i] = arr2[i] = rand() + i;

		int begin1 = clock();
		ShellSort(arr1, n);
		int end1 = clock();

		int begin2 = clock();
		HeapSort(arr2, n);
		int end2 = clock();

		timeShell += end1 - begin1;
		timeHeap += end2 - begin2;

		free(arr1);
		free(arr2);
	}

	printf("ShellSort : %.2f\n", 1.0 * timeShell / count);
	printf("HeapSort  : %.2f\n", 1.0 * timeHeap / count);

}

int main()
{
	srand((unsigned int)time(NULL));
	Ultimate_Test();
	return 0;
}


结语

看完之后,谁才是你心目中的排序呢?
欢迎留言,让我们一起来期待在下一期 《决战排序之巅(二)》

以上就是本期的全部内容喜欢请多多关注吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/225368.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

生命在于折腾——使用PD打开OVA格式虚拟机

一、前言 下载了一个封装的工具箱虚拟机&#xff0c;格式是OVA的&#xff0c;PD无法直接打开&#xff0c;之前成功转换后打开过&#xff0c;但那时候没有记录&#xff0c;今天记录一下。 二、过程 有两种方法 1、去vmware官网下载工具VMware OVF Tool 地址&#xff1a;htt…

Spatial Data Analysis(四):空间自相关示例

Spatial Data Analysis&#xff08;四&#xff09;&#xff1a;空间自相关示例 空间自相关是地理信息科学&#xff08;GIS&#xff09;和空间统计学中的重要概念之一&#xff0c;用于研究地理空间上的数据变异性和相关性。空间自相关分析的目标是探讨地理空间中的现象是否呈现…

8路编码器脉冲信号测量或16路DI高速计数器,Modbus RTU模块 YL69

特点&#xff1a; ● 编码器解码转换成标准Modbus RTU协议 ● 可用作编码器计数器或者转速测量 ● 支持8个编码器同时计数&#xff0c;可识别正反转 ● 也可以设置作为16路独立DI高速计数器 ● 编码器计数值支持断电自动保存 ● DI输入和电源之间3000V隔离 ● 通过RS-4…

【Java基础系列】JavaWeb入门

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

GUI的简单概述和基本使用

GUI的概念 1&#xff0c;到目前为止&#xff0c;我们编写的都是控制输入的程序&#xff0c;操作使用非常不直观&#xff0c;采取一直方式让效果呈现在窗口上。 2&#xff0c;GUI及图形界面指采用图像方式显示的用户界面&#xff0c;与早期计算机的命令行界面相比&#xff0c;…

【征稿倒计时十天】第三届高性能计算与通信工程国际学术会议(HPCCE 2023)

【有ISSN、ISBN号&#xff01;&#xff01;往届均已完成EI检索】 第三届高性能计算与通信工程国际学术会议(HPCCE 2023) 2023 3rd International Conference on High Performance Computing and Communication Engineering (HPCCE 2023) 2023年12月22-24日 | 中国哈尔滨 第三…

Web组态与传统组态有什么区别?探索云组态的革新

一、Web组态的定义和背景 在深入探讨之前&#xff0c;我们先回顾一下“组态”的定义。在工业自动化领域&#xff0c;组态软件是用于创建监控和数据采集&#xff08;SCADA&#xff09;系统的工具&#xff0c;它允许工程师构建图形界面&#xff0c;实现与各种设备和机器的数据交…

速达软件任意文件上传漏洞复现

简介 速达软件专注中小企业管理软件,产品涵盖进销存软件,财务软件,ERP软件,CRM系统,项目管理软件,OA系统,仓库管理软件等,是中小企业管理市场的佼佼者,提供产品、技术、服务等信息,百万企业共同选择。速达软件全系产品存在任意文件上传漏洞,未经身份认证得攻击者可以通过此漏…

微服务2 Docker学习 P42-P60

Docker学习视频https://www.bilibili.com/video/BV1LQ4y127n4?p42&vd_source8665d6da33d4e2277ca40f03210fe53a 文档资料: 链接&#xff1a;https://pan.baidu.com/s/1P_Ag1BYiPaF52EI19A0YRw?pwdd03r 提取码&#xff1a;d03r Docker 其他笔记 服务器容器化-docker(全…

Python第三次练习

Python 一、如何判断一个字符串是否是另一个字符串的子串二、如何验证一个字符串中的每一个字符均在另一个字符串中出现三、如何判定一个字符串中既有数字又有字母四、做一个注册登录系统 一、如何判断一个字符串是否是另一个字符串的子串 实现代码&#xff1a; string1 inp…

5G - NR物理层解决方案支持6G非地面网络中的高移动性

文章目录 非地面网络场景链路仿真参数实验仿真结果 非地面网络场景 链路仿真参数 实验仿真结果 Figure 5 && Figure 6&#xff1a;不同信噪比下的BER和吞吐量 变量 SISO 2x2MIMO 2x4MIMO 2x8MIMOReyleigh衰落、Rician衰落、多径TDL-A(NLOS) 、TDL-E(LOS)(a)QPSK (b)16…

【React Hooks】useReducer()

useReducer 的三个参数是可选的&#xff0c;默认就是initialState&#xff0c;如果在调用的时候传递第三个参数那么他就会改变为你传递的参数&#xff0c;实际开发不建议这样写。会增加代码的不可读性。 使用方法&#xff1a; 必须将 useReducer 的第一个参数&#xff08;函数…

代码随想录算法训练营 ---第五十七天

今天是两道动态规划的经典题目。 第一题&#xff1a; 简介&#xff1a; 做了今天的题目我有了新的理解&#xff0c;我觉得过去我过于注重对于二维数组的理解&#xff0c;忽略了对dp数组i 和 j 的含义的理解。 动态规划五部曲&#xff1a; 1.确定dp数组的含义 本题我们将i …

【Flutter】vs2022上开发flutter

在vs上开发flutter&#xff0c;结果扩展仓库上没办法找到Dart&#xff0c;Flutter。 在 这 搜索Dart时也无法找到插件。 最后发现是安装工具出错了 安装了 开发需要的是

Cython批量编译py文件并打包python项目为whl

1、Cython批量编译py文件 Cython是一个编程语言&#xff0c;它通过类似Python的语法来编写C扩展并可以被Python调用。能够将PythonC混合编码的.pyx脚本转换为C代码&#xff0c;主要用于优化Python脚本性能或Python调用C函数库。基于它的原理&#xff0c;可以得到一种代码加密的…

C++——红黑树

作者&#xff1a;几冬雪来 时间&#xff1a;2023年12月7日 内容&#xff1a;C——红黑树讲解 目录 前言&#xff1a; 红黑树的概念&#xff1a; 红黑树的性质&#xff1a; 红黑树的路径计算&#xff1a; 最长路径和最短路径&#xff1a; AVL树与红黑树的区别&#xff…

测试新手百科:Postman简介、安装、入门使用方法详细攻略!

一、Postman背景介绍 用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的&#xff0c;用户可以使用一些网络的监视工具比如著名的Firebug等网页调试工具。今天给大家介绍的这款网页调试工具不仅可以调试简单的css、html、脚本等简单的网…

zabbix(2)

zabbix的自动发现机制 zabbx客户端主动和服务端联系&#xff0c;将自己的地址和端口发送服务端&#xff0c;实现自动添加监控主机 客户端是主动的一方 缺点&#xff1a;自定义网段中主机数量太多&#xff0c;登记耗时会很久&#xff0c;而且这个自动发现机制不是很稳定 zabb…

Python---面向对象的综合案例

案例1&#xff1a;定义学员信息类&#xff0c;包含姓名、成绩属性&#xff0c;定义成绩打印方法&#xff08;90分及以上显示优秀&#xff0c;80分及以上显示良好&#xff0c;70分及以上显示中等&#xff0c;60分及以上显示合格&#xff0c;60分以下显示不及格&#xff09; 学员…

easyexcel导出报错 java.lang.NoClassDefFoundError: org/apache/poi/POIXMLTypeLoader

报错&#xff1a; org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.lang.NoClassDefFoundError: org/apache/poi/POIXMLTypeLoaderorg.springframework.web.servlet.DispatcherServlet.triggerAfterCompletionWit…