HBase-架构与设计

HBase架构与设计

  • 一、背景
  • 二、HBase概述
    • 1.设计特点
    • 2.适用场景
      • 2.1 海量数据
      • 2.2 稀疏数据
      • 2.3 多版本数据
      • 2.4 半结构或者非结构化数据
  • 三、数据模型
    • 1.RowKey
    • 2.Column Family
    • 3.TimeStamp
  • 四、HBase架构图
    • 1.Client
    • 2.Zookeeper
    • 3.HMaster
    • 4.HRegionServer
    • 5.HRegion
    • 6.Store
    • 7.StoreFile
    • 8.HLog
  • 五、元数据存储
    • 1.元数据表
    • 2.数据结构
  • 六、写流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送写入请求
  • 七、读流程
    • 1.获取Meta元数据
    • 2.获取RegionServer
    • 3.发送读请求
  • 八、持久化
    • 1.恢复机制
    • 2.MemStore 刷盘
      • 2.1 Memstore级别限制
      • 2.2 Region级别限制
      • 2.3 Region Server级别限制
      • 2.4 HLog数量上限
      • 2.5 定期刷新Memstore
      • 2.6 手动flush
    • 3.HFile 合并
      • 3.1 合并原理
      • 3.2 Minor Compaction
      • 3.3 Major Compaction
  • 总结
    • 参考链接


一、背景

HBase是一个基于java的NoSQL分布式列存储数据库,主要用于存储非结构化和半结构化的松散数据。将Hadoop中的HDFS作为底层文件存储系统,来提供容错和可靠性,以及存储系统的拓展性。
HBase的设计思想来自Google的Bigtable论文,是分布式数据库的实现。HDFS是一个高可靠、高延迟的分布式文件系统,但是不支持对数据的随机访问和更新,因此不适合实时计算系统。HBase是一个可以提供实时计算的大数据分布式数据库,支持对数据的随机访问和更新。

二、HBase概述

HBase的底层存储引擎是基于LSM-Tree数据结构设计的,存储是基于HDFS。而针对数据的更新和删除,不是修改原有记录而是新增一条记录,这样可以充分发挥顺序写的性能,但是查询的时候就需要查询磁盘中的文件和内存中的操作,读取所有数据版本。因此HBase写性能比读性能提高了两个数量级。

1.设计特点

  • 强一致性读写:HBase时强一致性读写,适合高速计数聚合之类的任务。
  • 自动分片:HBase表会按照水平方向拆分成Region分布在集群上,Region会随着数据增长自动拆分和重新均衡。
  • 故障转移:RegionServer如果发生故障会自动恢复
  • 集成HDFS:HBase内部集成HDFS作为其持久化存储组件
  • 支持MapReduce:HBase支持MapReduce进行大规模并行处理,支持写入和读取。
  • 查询优化:HBase通过块缓存和布隆过滤器来优化大容量查询

2.适用场景

2.1 海量数据

传递RDRMS当数据量增大时,需要读写分离策略来解决服务器压力。如果数据量继续增加就需要分库分表,这就限制了一些关联查询并引入中间层。每次变动都需要很多准备工作和业务代码修改验证。而且即使分库分表也无法解决一些数据倾斜和热点问题。HBase支持自动水平拓展,内部集成HDFS解决数据可靠性,还支持利用MapReduce进行海量数据分析。

2.2 稀疏数据

HBase作为列式存储适合稀疏数据,针对为null的列不会进行存储,这样可以节约存储空间并提高读性能。

2.3 多版本数据

HBase的更新和删除操作不会修改原有记录而是通过新增记录实现。通过RowKey和ColumnKey定位到多个TimeStamp相关的Value值,因此可以存储变动历史记录。可以通过设置版本数量,来确定HBase保留几次变动记录。

2.4 半结构或者非结构化数据

HBase无固定模式,不需要停机进行维护,支持半结构和非结构化的数据。

三、数据模型

作为一个面向列的分布式数据库,存储的数据是稀疏、多维、有序的。HBase表中的一条数据是由全局唯一的键(RowKey)和任意数量的列(Column),一列或者多列组成一个列族(Column Family)。
在这里插入图片描述

1.RowKey

RowKey与关系型数据库中的主键类似,用来唯一标识某行数据。整个表是按照RowKey进行排序。HBase按照RowKey划分为多个Region存储在不同的Region Server上,可以分布式对表进行存储和读取。

2.Column Family

Column Family是列族,一个列族可以包含多列。同一个列族中列数据都存储在Region的一个Store中。

3.TimeStamp

TimeStamp 是实现 HBase 多版本的关键。在HBase 中,使用不同 TimeStamp 来标识相同RowKey对应的不同版本的数据。

四、HBase架构图

HBase采用Master/Slave架构搭建集群,属于Hadoop生态系统的一部分。🈶HMaster节点、HRegionServer节点、Zookeeper集群组成,而数据会存储在HDFS中。整体架构如下图:
在这里插入图片描述
对HBase架构组成的每一个部分介绍如下。

1.Client

用户访问HBase的客户端,主要是包含HBase的接口,会缓存元数据来加快对HBase的访问。

2.Zookeeper

Zookeeper主要协调和管理HMaster和HRegionServer。HMaster和HRegionServer启动时会向Zookeeper进行注册。作用如下:

  • 保证任何时候,集群中只有一个HMaster。
  • 存储所有HRegion的寻址入口。
  • 实时监控HRegionServer的上线和下线信息,并通知给HMaster
  • 存储HBase的Schema和Table元数据

3.HMaster

负责管理RegionServer并实现负载均衡,管理和分配Region,管理namespace和table元数据。

4.HRegionServer

用来维护HMaster分配的region,处理这些region的读写请求,并且负责将运行过程中过的region进行切分。

5.HRegion

Region是HBase中分布式存储和负责均衡的最小单位。HBase表按照行方向被拆分为多个Region。不同的Region可以分布在不同的HRegionServer上,同一个Region只能在同一个HRegionServer上。当Region的某个列族达到一定阀值会被拆分成两个新的Region。

6.Store

每个Region按照ColumnFamily拆分成Store,一个Region由一个或者多个Store组成。每个ColumnFamliy会建一个Store,一个Store由一个memStore和多个StoreFile组成。

7.StoreFile

memStore中的数据写到文件之后就是StoreFile。StoreFIle底层就是HFile的格式保存在存储系统中。

8.HLog

记录数据的所有变更和操作日志,用来故障恢复。当Region Server出现故障,可以通过HLog恢复数据

五、元数据存储

1.元数据表

HBase中有一个系统表hbase:meta来存储HBase元数据。该表保存了所有的Region信息,hbase:meta也是一个HBase表被HRegionServer管理,hbase:meta表的位置信息保存在Zookeeper中。

2.数据结构

元数据表有一个RowKey和一个ColumnFamily组成,其中RowKey包括表名、起始Key、region编号。只包含一个info列族,包含三列:

  • info:regioninfo:regionId,tableName,startKey,endKey,offline,split,replicaId;
  • info:server:HRegionServer对应的server:port;
  • info:serverstartcode:HRegionServer的启动时间戳。

六、写流程

HBase的写入过程由于相当于添加新记录,因此写数据比读数据快,整体流程如下:
在这里插入图片描述

1.获取Meta元数据

首先需要知道表的元数据,也就是要知道表的region列表,这个信息时维护在meta表中。
1.1 client访问zookeeper获取Meta表所在的RegionServer信息
1.2 从zookeeper节点返回meta的RegionServer1信息

2.获取RegionServer

从Meta表中查询表的Region信息以及负责Region维护的RegionServer信息。
2.3 根据表名和RowKey向meta所在的RegionServer1发送查询请求
2.4 RegionServer1找到对应的meta的记录,返回对应Region信息,其中包括RegionServer2信息。Client会缓存此Region信息。

3.发送写入请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 RegionServer2将数据先写入到HLog,为了数据的持久化和恢复
3.7 RegionServer2将数据写入到MemStore。
3.8 RegionServer2返回给Client告知写入成功。

七、读流程

HBase读取数据需要返回所有版本数据,所以可能需要查询所有HFile文件,读性能比写慢了两个数量级。读取流程获取Meta元数据和RegionServer的过程和写过程一致。
在这里插入图片描述

1.获取Meta元数据

跟写过程一致

2.获取RegionServer

跟写过程一致

3.发送读请求

向RegionServer2发送写请求。
3.5 向Region所在的RegionServer2发送写请求
3.6 先在MemStore进行查找
3.7 如果MemStore没有,则需要在BlockCache中查找
3.8 如果BlockCache没有,则需要在StoreFile上查找
3.9 如果StoreFile查到到数据,需要将数据写入到BlockCache,再返回给Client。

八、持久化

1.恢复机制

上边的写请求过程可知,数据会先写入到HLog,然后再写入到内存MemStore。

  • HLog保存的是RegionServer上所有的日志操作,是记录操作的一种日志。当MemStore数据还没有持久化时,可以通过HLog进行故障恢复,保证数据正确性和持久化。
  • MemStore是在内存中维持列族数据按照RowKey顺序排列,然后顺序写入到磁盘中。主要是为了将来检索优化,将数据写入到HDFS之前在内存中将数据完成排序。

2.MemStore 刷盘

MemStore维持当前在内存中的同一个列族数据按照RowKey有序,当MemStore达到一定时机时会将MemStore中数据以HFile形式持久化到文件系统中。Flush触发条件如下:

2.1 Memstore级别限制

当Region中任意一个MemStore的大小达到了上限(hbase.hregion.memstore.flush.size,默认128MB),会触发Memstore刷新

<property>
    <name>hbase.hregion.memstore.flush.size</name>
    <value>134217728</value>
</property>

2.2 Region级别限制

当Region中所有Memstore的大小总和达到了上限(hbase.hregion.memstore.block.multiplier * hbase.hregion.memstore.flush.size,默认 2* 128M = 256M),会触发memstore刷新

<property>
    <name>hbase.hregion.memstore.flush.size</name>
    <value>134217728</value>
</property>
<property>
    <name>hbase.hregion.memstore.block.multiplier</name>
    <value>4</value>
</property> 

2.3 Region Server级别限制

当一个Region Server中所有Memstore的大小总和超过低水位阈值hbase.regionserver.global.memstore.size.lower.limit*hbase.regionserver.global.memstore.size(前者默认值0.95),RegionServer开始强制flush

<property>
    <name>hbase.regionserver.global.memstore.size.lower.limit</name>
    <value>0.95</value>
</property>
<property>
    <name>hbase.regionserver.global.memstore.size</name>
    <value>0.4</value>
</property>
  • 先Flush Memstore最大的Region,再执行次大的,依次执行;
  • 如写入速度大于flush写出的速度,导致总MemStore大小超过高水位阈值,此时RegionServer会阻塞更新并强制执行flush,直到总MemStore大小低于低水位阈值

2.4 HLog数量上限

当一个Region Server中HLog数量达到上限(可通过参数hbase.regionserver.maxlogs配置)时,系统会选取最早的一个 HLog对应的一个或多个Region进行flush

2.5 定期刷新Memstore

默认周期为1小时,确保Memstore不会长时间没有持久化。为避免所有的MemStore在同一时间都进行flush导致的问题,定期的flush操作有20000左右的随机延时。

2.6 手动flush

用户可以通过shell命令flush ‘tablename’或者flush ‘region name’分别对一个表或者一个Region进行flush。

3.HFile 合并

memstore每次刷新都会生成一个新的HFile文件,由于触发机制导致可能生成的大部分新HFile文件都是小文件。这样会导致查询过程中需要遍历非常多的小文件,导致维护困难、影响查询性能和效率。为了查询优化和清理过期数据,所以会对HFile进行合并。Compaction分为两类:Minor Compaction和Major Compaction。

3.1 合并原理

合并原理是指从一个Store中的部分HFile文件整合成一个新的HFile文件,其中会从待合并数据从文件读出,然后按照由小到达排序后写入新文件。

3.2 Minor Compaction

选取部分小的相邻的HFile,将他们合并成一个更大的HFile。

3.3 Major Compaction

将一个Store中所有的HFile合并成一个HFile。同时会清理掉过期、删除、多版本数据。

总结

HBase是基于分布式文件系统HDFS构建的一个大数据、NoSQL、可拓展分布式数据库。采用Master/Slave架构、用Zookeeper进行元数据保存和协调工作。采用LSM-TREE作为存储引擎,由于HDFS不支持修改和更新,所以HBase中将修改和更新作为新记录存储到HDFS中。HBase用牺牲读性能来提升大数据写入能力。


参考链接

1.Hbase原理
2.HBase教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/224001.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

flink使用事件时间时警惕kafka不同分区的事件时间倾斜问题

背景 flink和kafka的消息组合消费模式几乎是实时流处理的标配&#xff0c;然后当在flink中使用事件时间处理时&#xff0c;需要注意kafka不同分区元素之间时间相差太大的问题&#xff0c;这样有可能会导致严重的数据堆积问题 kafka不同分区元素事件时间差异较大导致的问题 总…

分布式光伏电站监控运维系统的简单介绍-安科瑞黄安南

摘要&#xff1a;设计了一套更高性价比&#xff0c;且容易操作的电站监控系统。该系统融合了互联网和物联网&#xff0c;并为光伏电数据的传输构建了相应的通道&#xff0c;可支持云存储等功能&#xff0c;同时也为用户提供了多元化的查询功能。 关键词&#xff1a;分布式太阳能…

gitLab 和Idea分支合并

以下二选1即可完成分支合并建议第一种简单有效 Idea合并方式 切换到被合并的分支&#xff0c;如我想把0701的内容合并到dev&#xff0c;切换到dev分支&#xff0c;然后再点击merge然后选择要合并的分支&#xff0c;即可,此时git上的代码没有更新只是把代码合到本地需要pull才…

ELK的日志解决方案

ELK的日志解决方案 一、ELK 介绍 ELK是一个流行的日志解决方案&#xff0c;它由三个开源工具组成&#xff1a;Elasticsearch、Logstash和Kibana。下面是这些工具的简单介绍以及它们在日志解决方案中的作用&#xff1a; Elasticsearch&#xff1a;Elasticsearch是一个分布式的搜…

设置webstorm和idea符合Alibaba规范

只格式化自己更改的代码 ctrlShiftAltL 插件建议 Alibaba Java Coding Guidelines&#xff08;新版本的idea不支持&#xff0c;有其他同名的非官方版可代替&#xff09;&#xff0c;使用方法在此不赘述 1、设置webstorm 包含 设置两个空格缩进&#xff0c;去掉行尾分号&#…

IDEA加载阿里Java规范插件

IDEA加载阿里巴巴Java开发手册插件&#xff0c;在写代码的时候会自动扫描代码规范。 1、打开Settings 2、打开Plugins 3、搜索Alibaba Java Code Guidelines&#xff08;XenoAmess TPM&#xff09;插件&#xff0c;点击Install进行安装&#xff0c;然后重启IDE生效。 4、鼠标右…

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(二)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境Jupyter Notebook环境Pycharm 环境微信开发者工具OneNET云平台 相关其它博客工程源代码下载其它资料下载 前言 本项目基于Keras框架&#xff0c;引入CNN进行模型训练&#xff0c;采用Dropout梯度…

uniapp 打包H5页面时候清除手机缓存问题

最近遇到一个情况&#xff1a; uniapp 写了一个H5 页面&#xff0c;挂在一个小程序上面&#xff0c;但是每次更新代码&#xff0c;新增新功能&#xff0c;总是有的用户看到的还是上一个版本的样式&#xff0c;前端打包的时候&#xff0c;已经在Uniapp项目的根目录下面新建了一个…

Hive数据库系列--Hive数据类型/Hive字段类型/Hive类型转换

文章目录 一、Hive数据类型1.1、数值类型1.2、字符类型1.3、日期时间类型1.4、其他类型1.5、集合数据类型1.5.1、Struct举例1.5.2、Array举例1.5.3、Map举例 二、数据类型转换2.1、隐式转换2.2、显示转换 本章主要讲解hive的数据类、字段类型。官网文档地址见https://cwiki.apa…

Java代码审计之SpEL表达式注入漏洞分析

文章目录 前言CVE-2022-22963漏洞简述环境搭建反弹shell CVE漏洞调试分析本地搭建调试分析补丁分析 总结 前言 表达式注入是 Java 安全中一类常见的能够注入命令并形成 RCE 的漏洞&#xff0c;而常见的表达式注入方式有 EL 表达式注入、SpEL 表达式注入和 OGNL 表达式注入等。…

【Docker】从零开始:17.Dockerfile基本概念

【Docker】从零开始&#xff1a;17.Dockerfile 概述1.什么是Dockerfile2.Dockerfile构建三大步骤3.Docker执行Dockerfile流程 一张图理解Dockerfile常用保留指令~FROM~~MAINTAINER~~RUN~两种格式 ~EXPOSE~~WORKDIR~~USER~~ENV~~ADD~~COPY~两种格式 ~VOLUME~~CMD~两种格式注意 ~…

在Spring Cloud中使用组件Ribbon和Feign,并分别创建子模块注册到Eureka中去

ok&#xff0c;在上篇文章中我们讲了在Spring cloud中使用Zuul网关&#xff0c;这篇文章我们将Spring Cloud的五大核心组件的Ribbon和Feign分别创建一个微服务模块。 题外话&#xff0c;本篇博客就是配置子模块&#xff0c;或者说是微服务&#xff0c;然后将微服务正式启动之前…

竞赛选题 题目:基于深度学习的中文对话问答机器人

文章目录 0 简介1 项目架构2 项目的主要过程2.1 数据清洗、预处理2.2 分桶2.3 训练 3 项目的整体结构4 重要的API4.1 LSTM cells部分&#xff1a;4.2 损失函数&#xff1a;4.3 搭建seq2seq框架&#xff1a;4.4 测试部分&#xff1a;4.5 评价NLP测试效果&#xff1a;4.6 梯度截断…

多人聊天Java

服务端 import java.io.*; import java.net.*; import java.util.ArrayList; public class Server{public static ServerSocket server_socket;public static ArrayList<Socket> socketListnew ArrayList<Socket>(); public static void main(String []args){try{…

区块链技术在数字营销中有哪些应用?

用于所有加密货币交易的数字账本称为区块链。随着更多图像被添加到“就绪”块中&#xff0c;它将继续扩展。每个区块都包含交易信息、时间戳和前一个区块的加密签名。为了辨别真正的比特币交易所和试图重印已经在其他地方发布的硬币&#xff0c;比特币节点使用区块链。 随着在…

点击el-tree小三角后去除点击后的高亮背景样式,el-tree样式修改

<div class"videoTree" v-loading"loadingTree" element-loading-text"加载中..." element-loading-spinner"el-icon-loading" element-loading-background"rgba(0, 0, 0, 0.8)" > <el-tree :default-expand-all&q…

多元线性回归(一)

基本概念 线性回归时机器学习中监督学习下的一种算法。回归问题主要关注是因变量&#xff08;需要预测的值&#xff0c;可以是一个也可以是多个&#xff09;和一个或多个值型的自变量&#xff08;预测变量&#xff09;之间的关系。 需要预测的值&#xff1a;即目标变量&#x…

智能优化算法应用:基于白冠鸡算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于白冠鸡算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于白冠鸡算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.白冠鸡算法4.实验参数设定5.算法结果6.参考文献7.…

dockerfile介绍与使用

文档&#xff1a;https://docs.docker.com/engine/reference/builder/ dockerfile介绍 dockerfile是什么 Dockerfile是一个创建镜像所有命令的文本文件, 包含了一条条指令和说明, 每条指令构建一层, 通过 docker build命令,根据Dockerfile的内容构建镜像,因此每一条指令的内…

【从0配置JAVA项目相关环境1】jdk + VSCode运行java + mysql + Navicat + 数据库本地化 + 启动java项目

从0配置JAVA项目相关环境 写在最前面一、安装Java的jdk环境1. 下载jdk2. 配置jdk3. 配置环境变量 二、在vscode中配置java运行环境1. 下载VSCode2. 下载并运行「Java Extension Pack」 三、安装mysql1.官网下载MySQL2.开始安装如果没有跳过安装成功 3.配置MySQL Server4.环境变…