python/matlab图像去雾/去雨综述

图像去雾和去雨是计算机视觉领域的两个重要任务,旨在提高图像质量和可视化效果。本文将综述图像去雾和去雨的算法、理论以及相关项目代码示例。

一、图像去雾算法

  1. 基于暗通道先验的方法:
    这是广泛应用于图像去雾的经典算法之一。该方法基于一个观察:自然场景中的大多数像素在至少一个颜色通道上具有非常低的值。通过分析图像的暗通道,可以估计场景的全局大气光照和深度信息,从而去除雾霾。
    在这里插入图片描述

  2. 基于物理模型的方法:
    这种方法基于图像成像过程中的物理模型,例如散射模型和退化模型。它们通过对图像的特定属性进行建模,如散射模型中的光线散射、传播和吸收等,来恢复原始场景。
    在这里插入图片描述

def dark_channel(image, patch_size):
    # 计算图像暗通道
    min_channel = np.min(image, axis=2)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (patch_size, patch_size))
    dark_channel = cv2.erode(min_channel, kernel)
    return dark_channel

def estimate_atmospheric_light(image, dark_channel, top_percentage):
    # 估计大气光照值
    num_pixels = int(dark_channel.size * top_percentage / 100)
    dark_channel_flat = dark_channel.flatten()
    indices = dark_channel_flat.argsort()[-num_pixels:]
    atmospheric_light = np.mean(image.reshape(-1, 3)[indices], axis=0)
    return atmospheric_light

def transmission_estimate(image, atmospheric_light, omega, patch_size):
    # 估计透射率
    normalized_image = image.astype(np.float64) / atmospheric_light
    dark_channel = dark_channel(normalized_image, patch_size)
    transmission = 1 - omega * dark_channel
    return transmission

def refine_transmission(image, transmission, epsilon, patch_size):
    # 优化透射率
    gray_image = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2GRAY)
    transmission_filtered = cv2.guidedFilter(gray_image, transmission, patch_size, epsilon)
    return transmission_filtered

def recover_scene(image, transmission, atmospheric_light, t0=0.1):
    # 恢复场景
    transmission_clipped = np.clip(transmission, t0, 1)
    recovered_scene = np.zeros_like(image, dtype=np.float64)
    for i in range(3):
        recovered_scene[:,:,i] = (image[:,:,i].astype(np.float64) - atmospheric_light[i]) / transmission_clipped + atmospheric_light[i]
    recovered_scene = np.clip(recovered_scene, 0, 255).astype(np.uint8)
    return recovered_scene
  1. 基于深度学习的方法:
    近年来,深度学习技术的发展为图像去雾带来了显著的改进。深度学习模型能够从大规模数据中学习图像的特征表示,从而实现更准确的去雾效果。例如,基于生成对抗网络(GAN)的方法结合了生成模型和判别模型,以生成真实感的去雾图像。
    在这里插入图片描述
    二、图像去雨算法

  2. 基于滤波的方法:
    这是最简单的去雨方法之一,通过应用线性或非线性滤波器来平滑图像并去除雨滴。这种方法的局限性在于无法处理复杂的雨滴遮挡情况。

  3. 基于物理模型的方法:
    类似于图像去雾算法,图像去雨也可以基于物理模型进行建模。通过建立雨滴的传播和反射模型,可以预测雨滴的位置和运动轨迹,并从受雨滴遮挡的图像中恢复出清晰的场景。
    在这里插入图片描述

  4. 基于深度学习的方法:
    同样,深度学习技术在图像去雨任务中也取得了显著的进展。通过训练深度神经网络,可以学习到从受雨滴遮挡的图像中恢复出清晰场景的映射关系。这些网络可以捕捉到雨滴的形状、纹理等特征,并生成去雨后的图像。

在这里插入图片描述

三、相关项目代码示例

  1. DehazeNet:
    这是一个基于深度学习的图像去雾项目,使用卷积神经网络来学习图像的去雾映射。该项目提供了预训练模型和示例代码,可用于去除图像中的雾霾效果。

  2. RainNet:
    这是一个基于深度学习的图像去雨项目,使用生成对抗网络来学习图像的去雨映射。该项目提供了模型训练代码和测试代码,可用于去除图像中的雨滴效果。

% 读取输入图像
input_image = imread('input.jpg');

% 将输入图像转换为灰度图像
gray_image = rgb2gray(input_image);

% 应用快速傅里叶变换 (FFT)
fft_image = fftshift(fft2(double(gray_image)));

% 创建垂直方向的滤波器
[M, N] = size(gray_image);
filter = ones(M, N);
filter(:, N/2-5:N/2+5) = 0; % 将垂直方向上的频率范围设置为零

% 将滤波器应用于频域图像
filtered_fft_image = fft_image .* filter;

% 应用逆傅里叶变换
filtered_image = abs(ifft2(ifftshift(filtered_fft_image)));

以上是关于图像去雾和去雨的算法、理论以及相关项目代码示例的综述。这些方法和项目为解决图像质量问题提供了有力的工具和技术,对于改善图像可视化效果具有重要意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/223854.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC修炼之旅(2)基础入门

一、第一个程序 1.1环境配置 略 1.2代码实现 package com.itheima.controller;import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.ResponseBody;//定义…

MySQL联合查询、最左匹配、范围查询导致失效

服务器版本 客户端:navicat premium16.0.11 联合索引 假设有如下表 联合索引就是同时把多列设成索引,如(empno,ename)在查询的时候就会先按照empno进行查询,再按照ename进行查询其中empno是全局有序,ename是局部有…

【银行测试】支付类测试关注点与异常点+支付平台...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、支付类的测试关…

Django回顾 - 6 Ajax

【1】Ajax 定义: 异步Javscript和XML 作用: Javascript语言与服务器(django)进行异步交互,传输的数据为XML(当然,传输的数据不只是XML,现在更多使用json数据) 同步交互和异步交互: 1、同步交互&…

Web server failed to start. Port 8081 was already in use.

netstat -aon|findstr "8081" taskkill /pid 20824 /f

现代雷达车载应用——第2章 汽车雷达系统原理 2.1节

经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.1 基本雷达功能 雷达系统通过天线或天线阵列向空间辐射电磁能量。辐射的电磁能量“照亮”周围的目标。“被照亮”的目标拦截一些辐射能量&#xff0…

开发步骤、Java开发工具

目录 一、开发步骤 二、Java开发工具 JDK安装完毕,我们就可以开始开发第一个Java程序了,习惯性的成为HelloWorld。 一、开发步骤 Java程序开发三步骤:编写、编译、运行 -将Java代码编写到扩展名为.java的源文件中 -通过javac.exe命令对…

Kontakt v7.7.2(音频采样器)

Native Instruments Kontakt 7是一款强大的软件采样器,它允许用户从各种来源采样音频并进行编辑和处理。它包含大量预设采样库,包括乐器、合成器、鼓组和声音效果等。此外,Kontakt 7还允许用户创建自己的采样库,以便根据自己的需要…

CTF特训日记day7

复现华为杯研究生国赛的adv_lua题目 从题目描述来看,漏洞应该和bytearray相关 用IDA逆向一下然后直接字符串搜索bytearray 只有这里有bytearray字样,继续查找交叉引用: 可以看到一系列方法,显然都是为bytearray所注册的吗&am…

Xilinx FPGA平台DDR3设计详解(三):DDR3 介绍

本文介绍一下常用的存储芯片DDR3,包括DDR3的芯片型号识别、DDR3芯片命名、DDR3的基本结构等知识,为后续掌握FPGA DDR3的读写控制打下坚实基础。 一、DDR3芯片型​号 电路板上的镁光DDR3芯片上没有具体的型号名。 ​如果想知道具体的DDR3芯片型号&#…

电力智慧运维系统

电力智慧运维系统是以提高用户侧电力运行安全,降低运维成本为目标;采用智能化运维管理工具—“电易云”,帮助企业建立电力运维体系全方位的信息化、数字化平台,实现设备运行的数字化在线监控与线下维护处理的有机融合,…

【海思SS528 | VO】MPP媒体处理软件V5.0 | VO模块编程总结

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

Netty中Channel的isWritable方法理解

目录 初见 深入 需要注意 对待超SIZE情况开源项目怎么做 1、seata中 2、SUMMER中 3、一些资料中 总结 初见 以下是包中注释 Returns true if and only if the I/O thread will perform the requested write operation immediately. Any write requests made when t…

如何解决syntaxerror: more than 255 arguments 报错

如何解决syntaxerror: more than 255 arguments 报错 问题背景解释解决方案 问题背景 今天拼接特征的时候,突然代码报错syntaxerror: more than 255 arguments ,看了一下感觉这个报错非常有意思,估计平时也是没机会碰到,和大家分…

线程基础介绍

什么是线程? linux内核中是没有线程这个概念的,而是轻量级进程的概念:LWP。一般我们所说的线程概念是C库当中的概念。 1.1线程是怎样描述的? 线程实际上也是一个task_struct,工作线程拷贝主线程的task_struct&#…

推出ASM2824 PCIe交换机,预计M.2插槽将增加,E3SB40E00004EE、E2SB40E00000JE 40MHz晶振

一、ASM2824 PCIe交换机,预计M.2插槽将增加 ASM2824 PCI-Express Gen 3.0 x24交换机采用PCI-Express 3.0 x8,并提供四个PCI-Express 3.0 x4连接,其结构为PLX PEX8747的一半。从理论上讲,这将允许主板设计人员从英特尔Z390芯片组的…

C++类和对象——(8)类的组合

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言​📝 人生就像骑单车,想保持平衡…

香港科技大学广州|机器人与自主系统学域博士招生宣讲会—北京专场!!!(暨全额奖学金政策)

在机器人和自主系统领域实现全球卓越—机器人与自主系统学域 硬核科研实验室,浓厚创新产学研氛围! 教授亲临现场,面对面答疑解惑助攻申请! 一经录取,享全额奖学金1.5万/月! 时间:2023年12月09日…

Python实现广义线性回归模型(statsmodels GLM算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 广义线性模型(Generalized Linear Model,简称GLM)是一种广泛应用于回归分析和分类问题的统…

MySql概述及其性能说明

MySQL是一种开源的关系型数据库管理系统,由瑞典MySQL AB公司开发,现属于Oracle公司。MySQL是最流行的开源数据库之一,被广泛地应用于Web开发中。MySQL提供了一个高度稳定可靠的数据存储解决方案,同时也可以很容易地跨平台运行。My…