14. 二叉树遍历

从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。

二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。

14.1 层序遍历

如下图所示,层序遍历(level-order traversal)从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。

层序遍历本质上属于广度优先遍历(breadth-first traversal, BFS),它体现了一种“一圈一圈向外扩展”的逐层遍历方式。

14.1.1 代码实现

广度优先遍历通常借助“队列”来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。实现代码如下:

/* 层序遍历 */
vector<int> levelOrder(TreeNode *root) {
    // 初始化队列,加入根节点
    queue<TreeNode *> queue;
    queue.push(root);
    // 初始化一个列表,用于保存遍历序列
    vector<int> vec;
    while (!queue.empty()) {
        TreeNode *node = queue.front();
        queue.pop();              // 队列出队
        vec.push_back(node->val); // 保存节点值
        if (node->left != nullptr)
            queue.push(node->left); // 左子节点入队
        if (node->right != nullptr)
            queue.push(node->right); // 右子节点入队
    }
    return vec;
}

14.1.2 复杂度分析

  • 时间复杂度 O(n) :所有节点被访问一次,使用 O(n) 时间,其中 n 为节点数量。
  • 空间复杂度 O(n) :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 (n+1)/2 个节点,占用 O(n) 空间。

14.2 前序、中序、后序遍历 

相应地,前序、中序和后序遍历都属于深度优先遍历(depth-first traversal, DFS),它体现了一种“先走到尽头,再回溯继续”的遍历方式。

下图展示了对二叉树进行深度优先遍历的工作原理。深度优先遍历就像是绕着整棵二叉树的外围“走”一圈,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。

 

14.2.1  代码实现 

深度优先搜索通常基于递归实现:

/* 前序遍历 */
void preOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:根节点 -> 左子树 -> 右子树
    vec.push_back(root->val);
    preOrder(root->left);
    preOrder(root->right);
}

/* 中序遍历 */
void inOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 根节点 -> 右子树
    inOrder(root->left);
    vec.push_back(root->val);
    inOrder(root->right);
}

/* 后序遍历 */
void postOrder(TreeNode *root) {
    if (root == nullptr)
        return;
    // 访问优先级:左子树 -> 右子树 -> 根节点
    postOrder(root->left);
    postOrder(root->right);
    vec.push_back(root->val);
}

下图展示了前序遍历二叉树的递归过程,其可分为“递”和“归”两个逆向的部分。

  1. “递”表示开启新方法,程序在此过程中访问下一个节点。
  2. “归”表示函数返回,代表当前节点已经访问完毕。

14.2.2 复杂度分析 

  • 时间复杂度 O(n) :所有节点被访问一次,使用 O(n) 时间。
  • 空间复杂度 O(n) :在最差情况下,即树退化为链表时,递归深度达到n),系统占用 O(n) 栈帧空间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/223374.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

0基础学java-day14

一、集合 前面我们保存多个数据使用的是数组&#xff0c;那么数组有不足的地方&#xff0c;我们分析一下 1.数组 2 集合 数据类型也可以不一样 3.集合的框架体系 Java 的集合类很多&#xff0c;主要分为两大类&#xff0c;如图 &#xff1a;[背下来] package com.hspedu.c…

Domino多Web站点托管

大家好&#xff0c;才是真的好。 看到一篇文档&#xff0c;大概讲述的是他在家里架了一台Domino服务器&#xff0c;上面跑了好几个Internet的Web网站&#xff08;使用Internet站点&#xff09;。再租了一台云服务器&#xff0c;上面安装Nginx做了反向代理&#xff0c;代理访问…

matlab实践(十):贝塞尔曲线

1.贝塞尔曲线 贝塞尔曲线的原理是基于贝塞尔曲线的数学表达式和插值算法。 贝塞尔曲线的数学表达式可以通过控制点来定义。对于二次贝塞尔曲线&#xff0c;它由三个控制点P0、P1和P2组成&#xff0c;其中P0和P2是曲线的起点和终点&#xff0c;P1是曲线上的一个中间点。曲线上…

前端JavaScript入门-day08-正则表达式

目录 介绍 语法 元字符 边界符 量词 字符类&#xff1a; 修饰符 介绍 正则表达式&#xff08;Regular Expression&#xff09;是用于匹配字符串中字符组合的模式。在 JavaScript中&#xff0c;正则表达式也是对象&#xff0c;通常用来查找、替换那些符合正则表达式的…

Distilling the Knowledge in a Neural Network(2015.5)(d补)

文章目录 Abstract1 Introduction2 Distillation2.1 Matching logits is a special case of distillation Results 论文链接 Abstract 提高几乎所有机器学习算法性能的一种非常简单的方法是在相同的数据上训练许多不同的模型&#xff0c;然后对它们的预测进行平均[3]。不幸的是…

Node.js安装和下载(保姆级教程,别再再说你不会了)

1.浏览器搜索node.js 2.打开官网&#xff08;选择Other Download&#xff09; ​ 3.根据你的计算机版本选择 4.找到你下载的程序&#xff08;双击打开&#xff09; 5.双击后的效果如下&#xff1a; 6.继续下一步 7.选择安装路径然后下一步 8.然后继续下一步 9. 直接下一步&am…

P6 Linux 系统中的文件类型

目录 前言 ​编辑 01 linux系统查看文件类型 02 普通文件 - 03 目录文件 d 04 字符设备文件 c 和块设备文件 b 05 符号链接文件 l 06 管道文件 p 07 套接字文件 s 总结 前言 &#x1f3ac; 个人…

数据增强改进,实现检测目标copypaste,增加目标数据量,提升精度

🗝️YOLOv8实战宝典--星级指南:从入门到精通,您不可错过的技巧   -- 聚焦于YOLO的 最新版本, 对颈部网络改进、添加局部注意力、增加检测头部,实测涨点 💡 深入浅出YOLOv8:我的专业笔记与技术总结   -- YOLOv8轻松上手, 适用技术小白,文章代码齐全,仅需 …

postgresql自带指令命令系列二

简介 在安装postgresql数据库的时候会需要设置一个关于postgresql数据库的PATH变量 export PATH/home/postgres/pg/bin:$PATH&#xff0c;该变量会指向postgresql安装路径下的bin目录。这个安装目录和我们在进行编译的时候./configure --prefix [指定安装目录] 中的prefix参…

consistency model

Consistency is All You Need - wrong.wang什么都不用做生成却快了十倍其实也并非完全不可能https://wrong.wang/blog/20231111-consistency-is-all-you-need/[学科基础] 从布朗运动到扩散模型采样算法 - 知乎引言 扩散模型是近年来新出现的一种生成模型&#xff0c;很多工作将…

现货白银简单介绍

在贵金属投资领域&#xff0c;现货白银是当前国际上最为流行、交投最为活跃的白银投资方式&#xff0c;其交易市场遍布全球&#xff0c;包括伦敦、苏黎世、纽约、芝加哥及香港等主要市场&#xff0c;是一种以杠杆交易和做市商的形式进行的现货交易。 现货白银可以说是当下交易模…

Python (二) 读写excel文件

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一波电子书籍资料&#xff0c;包含《Effective Java中文版 第2版》《深入JAVA虚拟机》&#xff0c;《重构改善既有代码设计》&#xff0c;《MySQL高性能-第3版》&…

1996-2021年世界各国WGI全球治理指标:政治稳定、制度控制、国家治理、控制腐败、自由指数数据

1996-2021年世界各国WGI全球治理指标&#xff1a;政治稳定、制度控制、国家治理、控制腐败、自由指数数据 1、时间&#xff1a;1996-2021年 2、指标&#xff1a;Voiceand Accountability、Political Stability No Violence、Government Effectiveness、Regulatory Quality、R…

tomcat控制台中文信息显示乱码

问题现象 我的tomcat版本是10.1版本。 在cmd下启动tomcat&#xff0c;会新打开控制台输出窗口&#xff1a; 控制台窗口输出的中文信息是乱码&#xff1a; 问题原因 产生这个问题的原因是&#xff1a;控制台窗口的编码和输出到控制台窗口的日志信息编码不一致。 查看tomc…

《opencv实用探索·十一》opencv之Prewitt算子边缘检测,Roberts算子边缘检测和Sobel算子边缘检测

1、前言 边缘检测&#xff1a; 图像边缘检测是指在图像中寻找灰度、颜色、纹理等变化比较剧烈的区域&#xff0c;它们可能代表着物体之间的边界或物体内部的特征。边缘检测是图像处理中的一项基本操作&#xff0c;可以用于人脸识别、物体识别、图像分割等多个领域。 边缘检测…

如何在服务器上运行python文件

目录 前置准备 详细步骤 一&#xff0c;在服务器安装Anaconda 下载安装包 上传文件到服务器 安装环境 二&#xff0c;创建虚拟环境 创建环境 三&#xff0c;测试执行python文件 执行python文件 查看进程状态 总结 前置准备 如何在个人服务器上运行python文件&#x…

elk+kafka+filebeat

elk1 cd /opt 把filebeat投进去 tar -xf filebeat-6.7.2-linux-x86_64.tar.gz mv filebeat-6.7.2-linux-x86_64 filebeat cd filebeat/ yum -y install nginx systemctl restart nginx vim /usr/share/nginx/html/index.html this is nginx cp filebeat.yml filebeat.yml.…

Matlab之统计数据分布并绘制直方图函数histogram

一、功能 直方图是一种将数据分组到条柱中的条形图。该函数可以统计数据在划分区间内的数量分布&#xff0c;同时以直方图的形式展示统计结果。 二、语法 1、histogram&#xff08;X&#xff09; 创建直方图X的图。该函数使用 一种自动分箱算法&#xff0c;返回具有统一宽度…

数组解构、对象解构与forEach方法遍历数组

解构赋值 1. 数组解构 1.1 基本语法 1.2 变量多 单元值少的情况 1.3 变量少 单元值多的情况 1.4 防止undefined传值情况 使用默认值 1.5 按需导入 忽略某些值 1.6 支持多维数组的解构 2. 对象解构 2.1 基本语法 2.2 给新的变量名赋值 2.3 数组对象解构 2.4 多级对象解构 cons…

网络安全威胁——跨站脚本攻击

跨站脚本攻击 1. 定义2. 跨站脚本攻击如何工作3. 跨站脚本攻击类型4. 如何防止跨站脚本攻击 1. 定义 跨站脚本攻击&#xff08;Cross-site Scripting&#xff0c;通常称为XSS&#xff09;&#xff0c;是一种典型的Web程序漏洞利用攻击&#xff0c;在线论坛、博客、留言板等共享…