Multidimensional Scaling(MDS多维缩放)算法及其应用

在这篇博客中,我将与大家分享在流形分析领域的一个非常重要的方法,即多维缩放MDS。整体来说,该方法提供了一种将内蕴距离映射到显性欧氏空间的计算,为非刚性形状分析提供了一种解决方案。当初就是因为读了Bronstein的相关工作【1】,才下定决心在人脸数据分析中使用内蕴度量来建立特征分析方法,可以说MDS对我的学术之路起到了很大的影响作用。


1. 前言

在非刚性形状匹配中,我们希望找到两个曲面的对应关系。由于受到非刚性形变影响,使得我们不能直接建立基于类似ICP一样的方法来实现对准。提到非刚性分析,很自然的就会让人联想到使用基于曲面第一基本形式的内蕴几何特征来建立分析方法。对于人脸人体这种非刚性形变分析对象,由于受到骨架的约束,使得其非刚性形变满足近似等距的特性,这里的等距指测地线。曲面第一基本形式对应曲面曲线,刚好可以使用测地线作为表示。那么,我们只要基于测地线来建立几何特征表达,就能够实现近似等距条件下的形状分析,进而满足非刚性形状分析要求。

关于测地线的计算,我在之前的博客已经有所介绍,有兴趣的同学可以翻看:

Fast Marching算法及其在点云测地线计算中的应用-CSDN博客

Geodesic in Heat: 一种测地线计算方法-CSDN博客

在有了测地线作为内蕴几何特征的显性表示后,我们希望对原始曲面建立一种形状度量,这种度量由测地线定义,能够反映形状之间的相似程度,进而推出点的对应关系。一个最直接的想法是利用参数化的方法。通过参数化,我们能够对原始的曲面进行“摊平”,进而在摊平后的参数域建立对应。然而,参数化需要指定边界和控制点,其本身的计算也相对复杂。如果对于拓扑相对复杂的形状建立参数化,其对原始测地线距离将会产生严重扭曲,即不再是可控的近似等距变换。我们希望使用类似ICP那样的直接距离对应方法,对基于测地线表示的曲面进行匹配。一个理想的方案是将点对间的测地距离,变换到一个m维的欧氏空间。在该欧氏空间中,点与点的欧氏距离与未变换前的点对测地距离存在一种对应关系。这样,我们只需要在变换后的形状进行刚性配准,点对的结果就对应了原始数据的非刚性对应结果。这就是使用MDS方法实现非刚性形状分析的初始想法。


2. MDS介绍

如前所述,MDS的目的就是将点间的测地距离嵌入到一个新的欧氏空间中,使得内蕴距离获得显性化的表达。在相关工作【2】中,这种嵌入后的曲面表达被称为bending-invariant canonical forms。具体过程如下:

首先我们给出一个测地线的表示δij,表示两点pi和pj的测地距离。我们把所有点的行列组成矩阵形式,使用δij填满,ij相等为0。然后,我们对δij求平方,重写矩阵里的项:

Δ所表达的矩阵在等距变换下是不变的,但是其形式会因为点序号的变化而变化。我们希望获得一个测地距离不变的表示,且具有唯一性。这时,就可以利用MDS将其嵌入到一个低维的欧氏空间中,该过程等价于:

嵌入误差可以写为:

MDS方法也包含很多类别,Bronstein在论文【3】中提到一种称为classical scaling【4】的方法来实现MDS:

首先对Δ进行中心化操作,即double-centering。J=I-1/2U,I是单位矩阵,U是一个完全由1组成的矩阵。之后对B进行主成分分析,获得对应的m个特征值和特征向量:

i对应点的序号,j对应m的维度,一般m取3,即将原始形状基于测地距离映射会三维欧氏空间。这样经过特征向量e表达的新坐标x在欧氏空间组成一个新的形状,在工作【1】中被称为Canonical form,以我的观点来看,即内蕴型。


3. 应用

Bronstein在最开始设计算法的时候,目标就是解决三维人脸识别中的表情鲁棒问题。他在论文中已经提到了一般性非刚性形状分析可以转换为对内蕴距离向欧氏空间的嵌入,如下图:

上面的例子充分说明将测地线嵌入回欧氏空间,对应的形状所具备的近似等距特性。原来手指的欧氏距离,一定会因为非刚性形变发生变化,但是对应的测地距离是稳定的。将测地距离嵌入回欧氏空间,得到右边的Canonical form,其点的欧氏距离就具备了原来点的测地距离特性。这时我们再使用类似ICP的方法,就能够非常方便的建立对应关系。

表情即被认为是一种近似等距的非刚性形变,如果我们对人脸数据进行类似Canonical form的变换,那么变换的结果自然会获得对表情不变的结果。原论文中给出了示意图:

可以看到第一行的人脸是具有多种不同的表情的。但是这些人脸的Canonical form具有极其相近的几何表示。在Canonical form的基础上,设计三维人脸识别算法,自然能获得表情鲁棒特性。论文中还给了一个系统界面:

整个算法流程还是非常清晰的。但是求Δ需要的庞大计算量,限制了该算法的效率。

Reference

[1] Bronstein AM, Bronstein MM, Kimmel R. Three-dimensional face recognition[J]. International Journal of Computer Vision, 2005, 64: 5-30.

[2] Elad A, Kimmel R. Bending Invariant Representations for Surfaces[C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, 2001, 2: 168-168.

[3] Bronstein AM, Bronstein MM, Kimmel R. Expression-invariant 3D face recognition[C]. International conference on Audio-and video-based biometric person authentication, 2003: 62-70.

[4] Young G, Householder A S. Discussion of a set of points in terms of their mutual distances[J]. Psychometrika, 1938, 3(1): 19-22.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/223149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java利用UDP实现简单群聊

一、创建新项目 首先新建一个新的项目,并按如下操作 二、实现代码 界面ChatFrame类 package 群聊; import javax.swing.*; import java.awt.*; import java.awt.event.*; import java.net.InetAddress; public abstract class ChatFrame extends JFrame { p…

决策树 (人工智能期末复习)

几个重要概念 信息熵:随机事件未按照某个属性的不同取值划分时的熵减去按照某个属性的不同取值划分时的平均 熵。即前后两次熵的差值。 表示事物的混乱程度,熵越大表示混乱程度越大,越小表示混乱程度越小。 对于随机事件,如果它的…

推荐一款Excel快速加载SQL的插件,方便又好用

如果告诉你只需要双击一下,SQL数据库中存放在表里面的数据,就能加载到你的Excel中,你想不想要? 今天给大家推荐一款好用的Excel插件,安装简单,使用方便,是经常使用SQL数据库的不二。 这款插件…

ANYTEXT: MULTILINGUAL VISUAL TEXT GENERATION AND EDITING

ANYTEXT: MULTILINGUAL VISUAL TEXT GENERATION AND EDITING Yuxiang Tuo, Institute for Intelligent Computing, Alibaba Group, ICLR2024 (6668), Code, Paper 1. 前言 基于扩散模型的文本到图像最近取得了令人印象深刻的成就。尽管当前用于合成图像的技术是高度先进的&am…

大话数据结构-查找-有序表查找

注:本文同步发布于稀土掘金。 3 有序表查找 3.1 折半查找 折半查找(Binary Search)技术,又称为二分查找,它的前提是线性表中的记录必须是关键码有序(通常从小到大有序),线性表必须…

助力信创自主可控,AntDB与浪潮、超聚变完成产品互认

日前,湖南亚信安慧科技有限公司与浪潮商用机器有限公司、超聚变数字技术有限公司展开产品兼容互认工作。 近年来,在数据处理需求快速增长以及信创政策加持的情况下,信创行业活力迸发。操作系统、数据库和服务器作为信创基础软硬件&#xff0…

idea编辑代码卡顿问题

现象: 日常开发代码的时候,偶尔会遇到开发某个项目的时候,一编辑代码就会idea就会卡住 定位: 1、不敲代码时,电脑性能一切正常 2、只要一修改代码,可以发现cpu老是飙到100 3、但是相同的一个项目&#x…

Ubuntu22.04通过Maas和Juju部署openstack charm

目录 官方文档材料准备软件硬件 模板机和虚拟网络安装MAAS官方文档MAAS节点配置安装MAAS浏览器登录MAAS进行配置 激活DHCP 官方文档 https://docs.openstack.org/project-deploy-guide/charm-deployment-guide/2023.1/ 这是一个通过Maas面板即可部署openstack的方式&#xff0…

python HTML文件标题解析问题的挑战

引言 在网络爬虫中,HTML文件标题解析扮演着至关重要的角色。正确地解析HTML文件标题可以帮助爬虫准确地获取所需信息,但是在实际操作中,我们常常会面临一些挑战和问题。本文将探讨在Scrapy中解析HTML文件标题时可能遇到的问题,并…

Spring Boot基础

文章目录 一、Spring Boot1. Spring的缺点2. Spring Boot 改变了什么3. Spring Boot项目搭建4. 热部署5. 依赖管理6. 代码生成器7. 日志8. 日期转换9. 接口文档10. 打包部署11. 自动装配 一、Spring Boot 1. Spring的缺点 在Spring Boot出现以前,使用Spring框架的…

Windows系统的Chkdsk(磁盘修复工具),好用快速的磁盘医生

一款非常具有专业性、权威的工具,可以全面的检测电脑的硬盘坏道,标记出来并且进行及时的修复,它还可以对移动硬盘等进行检测修复。chkdsk还可以支持目前流行的各种系统文件格式,例如:FAT、FAT32、NTFS等。还可以针对坏道磁盘错误进行深度优化,保证电脑磁盘的安全和完整性…

这是聊天阿!this (酸萝卜别吃)doge

1——on——1 chat 服务端 package work; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.util.ArrayList; import java.util.List;public class UDPServer {private static final int PORT 9876;private static List<ClientInf…

新生报到管理系统

【摘要】 随着我国教育水平的提高和新生数量的增加&#xff0c;合理妥善高效的进行新生接待&#xff0c;不但成为各个学校亟待解决的问题&#xff0c;对于广大新生来说&#xff0c;也是最先让他们了解学校形象的一个好机会。但是许多学校没有采用通过高效的系统来操作解决新生…

吉利护航,宣称比友商“更懂车”,魅族造车的底气与底色

继小米、华为后&#xff0c;又一家手机厂商宣布跨界造车。 在近日举办的2023魅族秋季无界生态发布会上&#xff0c;星纪魅族集团&#xff08;下称“魅族”&#xff09;董事长兼CEO沈子瑜宣布&#xff0c;魅族正式进入汽车市场&#xff0c;将在2024年第一季度启动“DreamCar共创…

pyqt5+QWebEngineView+pdfjs+win32print实现pdf文件的预览、打印

一、pdf显示逻辑 import sys from PyQt5 import QtCore, QtWidgets, QtWebEngineWidgetsPDFJS = file:///pdfjs-1.9.426-dist/web/viewer.html # PDFJS = file:///usr/share/pdf.js/web/viewer.html PDF = file:///D:/Code/report.pdfclass Window(QtWebEngineWidgets.QWebEng…

大话数据结构-查找-散列表查找(哈希表)

注&#xff1a;本文同步发布于稀土掘金。 8 散列表查找&#xff08;哈希表&#xff09; 8.1 定义 散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系f&#xff0c;使得每个关键字key对应一个存储位置f(key)。查找时&#xff0c;根据这个确定的对应关系找到给…

Python Collections库的高级功能详解

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com Python的collections库提供了一系列有用的数据类型&#xff0c;扩展了内建的数据类型&#xff0c;为开发者提供了更多高级功能。本文将深入探讨collections库的一些高级功能&#xff0c;通过详细的示例代码演示&…

北森2023半年报洞察:中国HCM SaaS市场的未来,只能是北森

作者 | 曾响铃 文 | 响铃说 中国的HCM SaaS市场处在了一个不尴不尬的状态&#xff0c;尽管前景广阔&#xff0c;但是需求却迟迟未能爆发&#xff0c;整体行业卡在了一个明显的瓶颈期。 其中&#xff0c;又以北森的处境最为典型。 根据IDC发布的《IDC中国人力资本管理&#…

EDW国际数据管理最新趋势(二)|信息供应链与数据

最近Data Fabric、Data Mesh、DataOps等话题非常火。其实&#xff0c;信息供应链谈的也是同样的东西&#xff0c;那就是如何将数据治理与数据集成整合在一起的解决方案。 下图虽然简单但涵盖了非常大的信息量。将4A架构进行了拆解&#xff0c;应用架构与技术架构主要是支撑业务…

AOP记录操作日志

创建数据库表 -- 操作日志 create table operate_log (id int unsigned primary key auto_increment commentid,operate_user int unsigned comment 操作人员Id,operate_time datetime comment 操作时间,class_name varchar(100)comment 操作类,method_name varchar(100)comme…