HuggingFace学习笔记--Prompt-Tuning、P-Tuning和Prefix-Tuning高效微调

1--Prompt-Tuning

1-1--Prompt-Tuning介绍

        Prompt-Tuning 高效微调只会训练新增的Prompt的表示层,模型的其余参数全部固定;

        新增的 Prompt 内容可以分为 Hard Prompt 和 Soft Prompt 两类;

        Soft prompt 通常指的是一种较为宽泛或模糊的提示,允许模型在生成结果时有更大的自由度,通常用于启发模型进行创造性的生成;

        Hard prompt 是一种更为具体和明确的提示,要求模型按照给定的信息生成精确的结果,通常用于需要模型提供准确答案的任务;

        Soft Prompt 在 peft 中一般是随机初始化prompt的文本内容,而 Hard prompt 则一般需要设置具体的提示文本内容;

1-2--实例代码

from datasets import load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq
from transformers import pipeline, TrainingArguments, Trainer
from peft import PromptTuningConfig, get_peft_model, TaskType, PromptTuningInit, PeftModel

# 分词器
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")

# 函数内将instruction和response拆开分词的原因是:
# 为了便于mask掉不需要计算损失的labels, 即代码labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
def process_func(example):
    MAX_LENGTH = 256
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")
    response = tokenizer(example["output"] + tokenizer.eos_token)
    input_ids = instruction["input_ids"] + response["input_ids"]
    attention_mask = instruction["attention_mask"] + response["attention_mask"]
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
    if len(input_ids) > MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

if __name__ == "__main__":
    # 加载数据集
    dataset = load_from_disk("./PEFT/data/alpaca_data_zh")
    
    # 处理数据
    tokenized_ds = dataset.map(process_func, remove_columns = dataset.column_names)
    # print(tokenizer.decode(tokenized_ds[1]["input_ids"]))
    # print(tokenizer.decode(list(filter(lambda x: x != -100, tokenized_ds[1]["labels"]))))
    
    # 创建模型
    model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
    
    # 设置 Prompt-Tuning
    # Soft Prompt
    # config = PromptTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10) # soft_prompt会随机初始化
    # Hard Prompt
    config = PromptTuningConfig(task_type = TaskType.CAUSAL_LM,
                                prompt_tuning_init = PromptTuningInit.TEXT,
                                prompt_tuning_init_text = "下面是一段人与机器人的对话。", # 设置hard_prompt的具体内容
                                num_virtual_tokens = len(tokenizer("下面是一段人与机器人的对话。")["input_ids"]),
                                tokenizer_name_or_path = "Langboat/bloom-1b4-zh")
    model = get_peft_model(model, config) # 生成Prompt-Tuning对应的model
    print(model.print_trainable_parameters())
    
    # 训练参数
    args = TrainingArguments(
        output_dir = "/tmp_1203",
        per_device_train_batch_size = 1,
        gradient_accumulation_steps = 8,
        logging_steps = 10,
        num_train_epochs = 1
    )
    
    # trainer
    trainer = Trainer(
        model = model,
        args = args,
        train_dataset = tokenized_ds,
        data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer, padding = True)
    )
    
    # 训练模型
    trainer.train()
    
    # 模型推理
    model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
    peft_model = PeftModel.from_pretrained(model = model, model_id = "/tmp_1203/checkpoint-500/")
    peft_model = peft_model.cuda()
    ipt = tokenizer("Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(peft_model.device)
    print(tokenizer.decode(peft_model.generate(**ipt, max_length=128, do_sample=True)[0], skip_special_tokens=True))

运行结果:

2--P-Tuning

2-1--P-Tuning介绍

        P-Tuning 是在 Prompt-Tuning的基础上,通过新增 LSTM 或 MLP 编码模块来加速模型的收敛;

2-2--实例代码

from datasets import load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq
from transformers import TrainingArguments, Trainer
from peft import PromptEncoderConfig, TaskType, get_peft_model, PromptEncoderReparameterizationType

# 分词器
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")

# 函数内将instruction和response拆开分词的原因是:
# 为了便于mask掉不需要计算损失的labels, 即代码labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
def process_func(example):
    MAX_LENGTH = 256
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")
    response = tokenizer(example["output"] + tokenizer.eos_token)
    input_ids = instruction["input_ids"] + response["input_ids"]
    attention_mask = instruction["attention_mask"] + response["attention_mask"]
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
    if len(input_ids) > MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

if __name__ == "__main__":
    # 加载数据集
    dataset = load_from_disk("./PEFT/data/alpaca_data_zh")
    
    # 处理数据
    tokenized_ds = dataset.map(process_func, remove_columns = dataset.column_names)
    # print(tokenizer.decode(tokenized_ds[1]["input_ids"]))
    # print(tokenizer.decode(list(filter(lambda x: x != -100, tokenized_ds[1]["labels"]))))
    
    # 创建模型
    model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
    
    # 设置 P-Tuning
    # 使用 MLP
    config = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10,
                             encoder_reparameterization_type=PromptEncoderReparameterizationType.MLP,
                             encoder_hidden_size=1024)
    # 使用LSTM
    config = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=10,
                             encoder_reparameterization_type=PromptEncoderReparameterizationType.LSTM,
                             encoder_dropout=0.1, encoder_num_layers=1, encoder_hidden_size=1024)

    model = get_peft_model(model, config) # 生成P-Tuning对应的model
    print(model.print_trainable_parameters())
    
    # 训练参数
    args = TrainingArguments(
        output_dir = "/tmp_1203",
        per_device_train_batch_size = 1,
        gradient_accumulation_steps = 8,
        logging_steps = 10,
        num_train_epochs = 1
    )
    
    # trainer
    trainer = Trainer(
        model = model,
        args = args,
        train_dataset = tokenized_ds,
        data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer, padding = True)
    )
    
    # 训练模型
    trainer.train()
    
    # 模型推理
    model = model.cuda()
    ipt = tokenizer("Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
    print(tokenizer.decode(model.generate(**ipt, max_length=128, do_sample=True)[0], skip_special_tokens=True))

3--Prefix-Tuning

3-1--Prefix-Tuning介绍

        Prefix-Tuning 会把可训练参数嵌入到整个模型中,即前缀;

        Prefix-Tuning 将多个 prompt vectors 放在每个 multi-head attention 的 key 矩阵和 value 矩阵之前;

3-2--代码实例

from datasets import load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq
from transformers import pipeline, TrainingArguments, Trainer
from peft import PrefixTuningConfig, get_peft_model, TaskType

# 分词器
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")

# 函数内将instruction和response拆开分词的原因是:
# 为了便于mask掉不需要计算损失的labels, 即代码labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
def process_func(example):
    MAX_LENGTH = 256
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")
    response = tokenizer(example["output"] + tokenizer.eos_token)
    input_ids = instruction["input_ids"] + response["input_ids"]
    attention_mask = instruction["attention_mask"] + response["attention_mask"]
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
    if len(input_ids) > MAX_LENGTH:
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return{
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

if __name__ == "__main__":
    # 加载数据集
    dataset = load_from_disk("./PEFT/data/alpaca_data_zh")
    
    # 处理数据
    tokenized_ds = dataset.map(process_func, remove_columns = dataset.column_names)
    # print(tokenizer.decode(tokenized_ds[1]["input_ids"]))
    # print(tokenizer.decode(list(filter(lambda x: x != -100, tokenized_ds[1]["labels"]))))
    
    # 创建模型
    model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
    
    # 设置Prefix-tuning
    config = PrefixTuningConfig(task_type = TaskType.CAUSAL_LM, num_virtual_tokens = 10, prefix_projection = True)
    model = get_peft_model(model, config)
    # print(model.prompt_encoder)
    # print(model.print_trainable_parameters())
    
    # 训练参数
    args = TrainingArguments(
        output_dir = "/tmp_1203",
        per_device_train_batch_size = 1,
        gradient_accumulation_steps = 8,
        logging_steps = 10,
        num_train_epochs = 1
    )
    
    # trainer
    trainer = Trainer(
        model = model,
        args = args,
        train_dataset = tokenized_ds,
        data_collator = DataCollatorForSeq2Seq(tokenizer = tokenizer, padding = True)
    )
    
    # 训练模型
    trainer.train()
    
    # 模型推理
    model = model.cuda()
    ipt = tokenizer("Human: {}\n{}".format("考试有哪些技巧?", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
    print(tokenizer.decode(model.generate(**ipt, max_length=128, do_sample=True)[0], skip_special_tokens=True))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/221986.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring容器启动过程中的自定义操作插口汇总

目录标题 PostConstruct注解EventListener方式InitializingBean的afterPropertiesSet方法实现ApplicationRunner接口重写run方法实现AplicationContextAware接口重写setApplicationContext实现ServletContextListener接口contextInitialized方法实现ServletContextAware接口set…

408-2018

一、单项选择题(2 分/题) 1.若栈 S1 中保存整数,栈 S2 中保存运算符,函数 F() 依次执行下述各步操作: (1)从 S1 中依次弹出两个操作数 a 和 b (2)从 S2 中弹出一个运算符…

Linux-centos上如何配置管理NFS服务器?

Linux/centos上如何配置管理NFS服务器? 1 NFS基础了解 NFS(Network File System)即文件操作系统;NFS允许网络中不同计算机相互之间共享资源。 1.1 NFS概述 1980年由SUN发展出来的在UNIX&Linux系统间实现文件共享的一种方法…

【labview报错,缺少GOOP Development Suite】

操作 当labview报此错误时,第一类情况为缺少包,第二类为所使用的GPU包已失效 以下为第一类缺包的解决方式 登录VIPM,如何安装VIPM查看此贴:VIPM安装 打开VIPM后,右上角输入goop,双击搜索出的安装包 勾选需要安装的包…

C++ 命名空间详解

目录 引入例子 命名空间的定义 命名空间的使用 命名空间使用注意事项 引入例子 #include <stdio.h> #include <stdlib.h>int rand 10;int main() {printf("%d\n", rand);return 0; } 当我们用C语言写下这样的代码&#xff0c;看着并没有什么语法问…

Oracle(2-11)RMAN Backups

文章目录 一、基础知识1、RMAN Backup Concepts RMAN备份概念2、RMAN Backup Modes RMAN备份的类型3、Backup File Types 备份文件类型4、RMAN Backup Destinations RMAN备份目标5、Backup Constraints 备份约束6、Recovery Manager Backups 恢复管理器备份7、Characteristics …

Vue混淆与还原

Vue混淆与还原 引言 Vue是一种流行的JavaScript框架&#xff0c;用于构建用户界面。它简单易用且功能强大&#xff0c;备受开发者喜爱。然而&#xff0c;在传输和存储过程中&#xff0c;我们需要保护Vue代码的安全性。混淆是一种有效的保护措施&#xff0c;可以加密和压缩代码…

股市复苏中的明懿金汇:抓住新机遇

2023年对于明懿金汇来说是充满挑战与机遇的一年。面对复杂多变的市场环境&#xff0c;明懿金汇展现了其对市场趋势的敏锐洞察和卓越的策略适应能力。以下是该公司在2023年的主要投资策略和市场适应方式的详细分析。 随着2023年中国股市迎来反弹&#xff0c;明懿金汇迅速调整了…

【Backbone】TransNeXt:最新ViT模型(原理+常用神经网络汇总)

文章目录 一、近几年神经网络 Backbone 回顾1.Densenet 与 Resnet2.CBP3.SENet4.GCNet5.DANet6.PANet 与 FPN7.ASPP8.SPP-net9.PSP-net10.ECA-Net 二、TransNeXt&#xff08;2023&#xff09;1.提出问题2.Aggregated Pixel-focused Attention2.1 Pixel-focused Attention&#…

图像识别经典轻量级网络模型总结梳理、原理解析与优劣对比分析

在前面的很多博文中&#xff0c;我们不止一次提到过&#xff0c;在实际业务项目开发过程中&#xff0c;我们会经常使用到轻量级的网络模型&#xff0c;本文主要是总结梳理前面经常使用到的一些轻量级的图像识别模型。 【MobileNetv1】 MobileNetv1 是一种轻量级的卷积神经网络&…

景联文科技:高质量垂直领域数据集助力AI技术突破

随着人工智能技术的飞速发展&#xff0c;垂直领域数据集在提升模型性能、解决领域问题、推动创新应用以及提升竞争力等方面的重要性日益凸显。 提高模型性能&#xff1a;垂直领域数据集专注于特定任务或领域&#xff0c;使用这些数据集进行训练可以让模型更好地理解和解决特定领…

静态HTTP和动态HTTP有什么区别

静态HTTP是指网页内容在服务器上以静态文件的形式存在&#xff0c;每个页面都是固定的&#xff0c;不能根据用户的操作或输入进行改变。当用户请求一个静态页面时&#xff0c;服务器直接将页面的HTML代码返回给用户的浏览器进行显示。静态HTTP服务器的主要优点是速度快、简单易…

【开源】基于Vue.js的房屋出售出租系统

文末获取源码&#xff0c;项目编号&#xff1a; S 083 。 \color{red}{文末获取源码&#xff0c;项目编号&#xff1a;S083。} 文末获取源码&#xff0c;项目编号&#xff1a;S083。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 房屋销售模块2.2 房屋出租模块2.3 预…

[足式机器人]Part2 Dr. CAN学习笔记-数学基础Ch0-3线性化Linearization

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记-数学基础Ch0-3线性化Linearization 1. 线性系统 Linear System 与 叠加原理 Superposition2. 线性化&#xff1a;Taylor Series3. Summary 1. 线性系统 Linear System 与 叠加原理 Superposition…

易点易动设备管理系统--提升设备备品备件管理效率的工具

设备备品备件管理是市场推广人员关注的重要问题之一。为了帮助市场推广人员提升设备备品备件管理效率&#xff0c;易点易动设备管理系统应运而生。本文将详细介绍易点易动设备管理系统的功能和优势&#xff0c;以及如何借助该系统提高设备备品备件管理效率&#xff0c;提升企业…

案例046:基于微信小程序的云上考场

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…

吉他初学者学习网站搭建系列(5)——如何做一个在线节拍器

文章目录 背景实现TransportLoop代码 在线尝试 背景 我们看吉他谱时&#xff0c;经常看到拍号&#xff0c;例如6/8。它的含义是一拍是一个八分音符&#xff0c;一小节有六拍。四分音符的时长是一秒&#xff0c;即60拍/分钟。基于这样的背景知识&#xff0c;我们就可以根据一些…

ChatGPT文书替代论“热”潮背后的“冷”思考

2022年11月底OpenAI推出的人工智能聊天工具ChatGPT仅推出一周就火爆全球&#xff0c;推出两个月&#xff0c;就在全球范围内坐拥1亿用户&#xff0c;根据华尔街消息&#xff0c;OpenAI目前估值已达290亿美元。 认识ChatGPT ChatGPT是由美国成立的人工智能研究公司OpenAI研究开…

Faster Transformer

Faster Transformer FasterTransformer包含transformer块的高度优化版本的实现&#xff0c;该块包含编码器和解码器部分。基于高效率的开发语言和工具&#xff1a; C, CUDA, cuBLAS and cuBLASlt支持的模型数据格式&#xff1a;FP32, FP16, BF16, INT8 (limited models) and F…

【matlab程序】matlab画太极图|阴阳

【matlab程序】matlab画太极图|阴阳 %% 海洋与大气科学; % 时间:20231205; % clear;clc;close all; t=0:1/100000:2pi+0.00001; t1=-pi/2:1/100000:pi/2+0.00001; t2=pi/2:1/100000:3pi/2+0.00001; R=10; r=1; figure plot(Rcos(t),Rsin(t),‘color’,‘k’,‘lin…