2022年第十一届数学建模国际赛小美赛B题序列的遗传过程解题全过程文档及程序

2022年第十一届数学建模国际赛小美赛

B题 序列的遗传过程

原题再现:

  序列同源性是指DNA、RNA或蛋白质序列之间的生物同源性,根据生命进化史中的共同祖先定义[1]。DNA、RNA或蛋白质之间的同源性通常根据它们的核苷酸或氨基酸序列相似性来推断。显著的相似性是两个序列通过共同祖先序列的进化变化而相互关联的有力证据[2]。
  考虑RNA序列的遗传过程,其中核苷酸碱基的突变是偶然发生的。为简单起见,我们假设序列突变是由于单个碱基的改变(转换或转换)、插入和删除引起的。因此,我们可以通过突变点的数量来度量两个序列之间的距离。多个碱基序列紧密结合可以形成一个家族,它们被认为是同源的。
  您的团队被要求开发一个合理的数学模型来完成以下问题。

  1、请设计一种算法,快速测量两个足够长(>103个碱基)的碱基序列之间的距离。
  2、请可靠地评估算法的复杂度和准确性,并设计合适的例子加以说明。
  3、如果一个家族中的多个碱基序列是由一个共同的祖先序列进化而来,设计一个高效的算法来确定祖先序列,并映射系谱树。

整体求解过程概述(摘要)

  随着现代基因组学的发展,越来越多的基因序列被破译出来。基于如此庞大的基因数据库,高效地实现基因序列比对具有重要意义。碱基序列间的相似性不仅可用于基因性状分析,还可用于确定基因同源性和进化过程。
  为了量化基因同源性,我们提供了基因距离和相似性的明确定义。两个碱基序列之间的基因距离可以用将序列Sm转换为另一个序列Sn的代价来表示,在转换过程中,只允许使用一系列合格的编辑手段,如插入和替换字符。相似性是指两个序列之间相等的碱基数目。在遗传距离和相似性的计算中,基因比对是一个整体。
  基因比对的关键是找出碱基序列之间如何合理匹配,以减少单个碱基变异对整体比对的影响。将基因序列视为一个由a、G、T、C四个字符组成的字符串,其两两匹配问题等价于经典的LCS(最长公共子序列)问题,即通过增加空格使两个字符串对应位置的相等字符数最大化。
  由于单个字符的编辑操作受到限制,因此可以列出每个匹配的状态转移方程,然后使用动态规划算法:Needleman-Wunsch(NW)算法找到最佳匹配。经过结构分析,该算法的时间复杂度和空间复杂度均为O(mn)。通过和现有序列匹配工具的比较,表明该算法具有高效性、准确性和适用性,匹配度为86.71%。
  根据基因距离,我们可以在一组同源基因中反转共同的祖先序列,并绘制家谱树。对于系谱树,我们参考系统发育树的生成,并应用两种算法来重建一组基因之间的进化过程。邻域连接法(NJ)和算术平均无权对群法(UPGMA)采用不同的聚类原则,可以构造两个不同的系谱树。将系统发育树与序列比对算法相结合,有效地得到了原始序列。
  为了验证系谱树的准确性,我们还设计了一个自顶向下的生成程序来模拟基因进化过程。结果表明,回溯得到的祖先序列与生成序列的起始点具有很高的相似性,证明了该算法的准确性和实用性。

模型假设:

  为了简化问题,我们做了以下假设:

  •1.有限的基因突变
  我们假设序列突变只发生在单个碱基发生改变、插入和缺失的情况下。
  •2.所研究的序列对一般都具有全局最优比对,基因序列比对大致可分为全局比对和局部比对两类。为了简化情况,
  •3.尽管正、副同系物是同系物的两个重要概念,但它们之间的区别是可以忽略的,难以量化和区分。因此,我们忽略了这两个亚类之间的差异,只关注同源基因的遗传距离。
  •4.模拟的基因变异率高于实际的基因变异率,实际的基因变异率很低,约为50%。然而,在模拟程序中,我们假设每个变异率都略高于实际值,以使比较更加显著。

问题重述:

  为了更有效地解决问题,我们将课题的要求归纳为以下具体问题,并对如何回答这些问题进行了深入分析。

  •问题1:设计一种有效的算法来测量两个碱基序列之间的遗传距离。
  计算基因距离有两个关键点:
  1、确定基因距离的定量表示
  2、设计一种高效的算法实现两个字符串序列的对齐

  •问题2:评估算法的复杂性和准确性。
  对于复杂性,需要进行时间和空间复杂性分析;在准确性方面,我们设计了几个特殊的测试样本,以验证算法逻辑的严密性。

  •问题3:设计一种有效的算法来确定多个同源碱基序列的祖先序列。
  基于上述基因距离的确定,我们可以得到一组碱基序列中任意两个样本之间的相似性。通过不断寻找相似度最大的样本,并将它们合并得到它们的直系祖先,我们可以自下而上构造一棵系谱树。
  与问题2类似,我们可以生成一系列具有已知遗传关系的序列来检验算法的准确性。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

1 import sys
2 import time
3 import platform
4
5 def theta(a, b):
6 if a != b: # gap or mismatch
7 return1
8 if a == b: # match
9 return 1
10 if a == ’−’ or b == ’−’:
11 return1
12
13 def make_score_matrix(seq1, seq2):
14
15 seq1 = ’−’ + seq1
16 seq2 = ’−’ + seq2
17 score_mat = {}
18 trace_mat = {}
19
20 for i,p in enumerate(seq1):
21 score_mat[i] = {}
22 trace_mat[i] = {}
23 for j,q in enumerate(seq2):
24 if i == 0:
25 # first row, gap in seq1
26 score_mat[i][j] = −j
27 trace_mat[i][j] = 1
28 continue
29 if j == 0:
30 # first column, gap in seq2
31 score_mat[i][j] = −i
32 trace_mat[i][j] = 2
33 continue
34 ul = score_mat[i−1][j−1] + theta(p, q)
35 # from up−left, mark 0
36 l = score_mat[i][j−1] + theta(’−’, q)
37 # from left, mark 1, gap in seq1
38 u = score_mat[i−1][j] + theta(p, ’−’)
39 # from up, mark 2, gap in seq2
40 picked = max([ul,l,u])
41 score_mat[i][j] = picked
42 trace_mat[i][j] = [ul, l, u].index(picked)
43 # record which direction
44 print("SameNum:",score_mat[i][j])
45 return score_mat, trace_mat
46
47 def traceback(seq1, seq2, trace_mat):
48
49 seq1, seq2 = ’−’ + seq1, ’−’ + seq2
50 i, j = len(seq1)1, len(seq2)1
51 path_code = ’’
52 while i>0 or j > 0:
53 direction = trace_mat[i][j]
54 if direction == 0:
55 # from up−left direction
56 i = i−1
57 j = j−1
58 path_code =0+ path_code
59 elif direction == 1:
60 # from left
61 j = j−1
62 path_code =1+ path_code
63 elif direction == 2:
64 # from up
65 i = i−1
66 path_code =2+ path_code
67 return path_code
68
69 def print_m(seq1, seq2, m):
70 seq1 = ’−’ + seq1; seq2 = ’−’ + seq2
71 print()
72 print(’ ’.join([%3s’ % i for i in ’ ’+seq2]))
73 for i, p in enumerate(seq1):
74 line = [p] + [m[i][j] for j in range(len(seq2))]
75 print(’ ’.join([%3s’ % i for i in line]))
76 print()
77 return
78
79 def pretty_print_align(seq1, seq2, path_code):
80 align1 = ’’
81 middle = ’’
82 align2 = ’’
83 n=0
84 for p in path_code:
85 n=n+1
86 if p ==0:
87 align1 = align1 + seq1[0]
88 align2 = align2 + seq2[0]
89 if seq1[0] == seq2[0]:
90 middle = middle +|91 else:
92 middle = middle + ’ ’
93 seq1 = seq1[1:]
94 seq2 = seq2[1:]
95 elif p ==1:
96 align1 = align1 + ’−’
97 align2 = align2 + seq2[0]
98 middle = middle + ’ ’
99 seq2 = seq2[1:]
100 elif p ==2:
101 align1 = align1 + seq1[0]
102 align2 = align2 + ’−’
103 middle = middle + ’ ’
104 seq1 = seq1[1:]
105
106 if n==50:
107 print(’EMBOSS_001:+ align1)
108 print(’EMBOSS_002:+ align2+ ’\n’)
109 n=0
110 align1 = ’’
111 align2 = ’’
112 return
113
114 def usage():
115 print(’Usage:\n\t python nwAligner.py seq1 seq2\n’)
116 return
117
118 def main():
119 with open(’gene1.txt’,’r’,encoding=’utf−8) as f1:
120 seq1 = f1.read()
121 with open(’gene2.txt’,’r’,encoding=’utf−8) as f2:
122 seq2 = f2.read()
123 #
124 # print(’1: %s’ % seq1)
125 # print(’2: %s’ % seq2)
126
127 score_mat, trace_mat = make_score_matrix(seq1, seq2)
128 # print_m(seq1, seq2, score_mat)
129 # print_m(seq1, seq2, trace_mat)
130
131 path_code = traceback(seq1, seq2, trace_mat)
132 pretty_print_align(seq1, seq2, path_code)
133 # print(’ ’+path_code)
134
135 if __name__ == ’__main__’:
136 print(:, platform.system())
137 T1 = time.perf_counter()
138 main()
139 T2 =time.perf_counter()
140 print(:%s’ % ((T2 − T1)*1000))
 %−−−−−−−−−−−−−−− test1−−−−−−−−−−
2 % Runs example for UPGMA and NJ
3
4 clc
5 clear all
6
7 data = {’Anolis’ ’ATGACAATTACACGCAAATCCCACCCAATTTTC
8 AAAATTATTAACGACTCCTTTATTGAT’;
9 ’Basili’ ’ATGACAATCCTACGAAAATCCCACCC
10 AATCCTTAAAATAATCAACTCTTCATTCATCGAC’;
11 ’Chalar’ ’ATGACAATCATCCGAAAAACACACCC
12 AATTTTCAAAATTGTAAACGACTCATTCATTGAC’;
13 ’Gambel’ ’ATGACAATCACACGAAAATCCCACCCG
14 ATCATCAAAATCGTAAACAACTCATTTATTGAC’;
15 ’Leioce’ ’ATGACAATCACACGAAAAACTCACCCA
16 CTATTTAAAATCATCAATAACTCCTTTATTGAC’;
17 };
18 for ind = 1:length(data)
19 f(ind).Header = data{ind,1};
20 f(ind).Sequence = data{ind,2};
21 end
22
23 % UPGMA
24 distances = seqpdist(f,’Method’,’Jukes−Cantor’,’Alpha’,’DNA’);
25 UPGMAtree = seqlinkage(distances,’UPGMA’,f);
26 h = plot(UPGMAtree, ’orient’, ’top’);
27 title(’UPGMA Distance Tree of Iguanas
28 using Jukes−Cantor model’);
29 ylabel(’Evolutionary distance’)
30
31
32 % NJ
33 NJtree = seqneighjoin(distances,’equivar’,f);
34 h = plot(NJtree, ’orient’, ’top’);
35 title(’Neighbor−Joining Distance Tree of Iguanas using
36 Jukes−Cantor model’);
37 ylabel(’Evolutionary distance’)
38
39 %−−−−−−−−−−−−−−−− test2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 % This test runs Branch and Bound and Exhaustive Search
41
42 clear all
43 clc
44 data_iguana = { ’Anolis’ ’ATGACAATTACACGCAAATCCCACCCAATTTT
45 CAAAATTATTAACGACTCCTTTATTGAT’;
46 ’Basili’ ’ATGACAATCCTACGAAAAT
47 CCCACCCAATCCTTAAAATAATCAACTCTTCATTCATCGAC’;
48 ’Chalar’ ’ATGACAATCATCCGAAAAA
49 CACACCCAATTTTCAAAATTGTAAACGACTCATTCATTGAC’;
50 ’Gambel’ ’ATGACAATCACACGAAAATCCC
51 ACCCGATCATCAAAATCGTAAACAACTCATTTATTGAC’;
52 ’Leioce’ ’ATGACAATCACACGAAAAACTCA
53 CCCACTATTTAAAATCATCAATAACTCCTTTATTGAC’;
54 ’Leioce1’ ’ATGACAATCACACGAAAAACTCAC
55 CCACTATTTAAAATCATCAATAACTCCTTTATTGAC’;
56 ’Leioce2’ ’ATGACAATCACACGAAATACT
57 CACCCACTATTTAAAATCATCAATAACTCCTTTATTGAC’;
58 ’222222’ ’ATGACAATCACACGAAATACTCA
59 CCCACTATTTAAAATCATCAATAACTCCTTTATTGAC’;
60 };
61
62 %Create a matrix with al sites with usefull information
63 [row, col] = size(data_iguana);
64 for i = 1:row
65 temp = data_iguana{i, 2};
66 matrix{i, :} = temp;
67 names = data_iguana{i, 1};
68 name_matrix{i, :} = names;
69 end
70
71 for i = 1:row
72 data(i, :) = matrix{i};
73 end
74
75 set_of_seq = non_inf_sites(data, 3);
76 %Search using improved Branch and Bound
77 tic
78 [optimal_score, optimal_model] = BrB(set_of_seq, name_matrix);
79 toc
80
81
82 %% Search using Exhaustive Search
83 tic
84 [optimal_score1, optimal_model1] = ExhaustiveSearch(set_of_seq,
85 name_matrix);
86 toc
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/221914.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【EI征稿中|SPIE出版】 第四届传感器与信息技术国际学术会议(ICSI 2024)

第四届传感器与信息技术国际学术会议(ICSI 2024) 2024 4th International Conference on Sensors and Information Technology(ICSI 2024) 第四届传感器与信息技术国际学术会议(ICSI 2024)将于2024年1月5…

VS2019shi用动态链接库

.dll文件路径包含 C/C常规-------->附加包含目录 将动态库项目文件路径包含在附加包含目录。 .lib文件路径包含 连接器------------>输入------------------>附加依赖项 .lib文件名字输出附加依赖项 连接器------------>常规------------------>附加库目录 添加…

软著项目推荐 深度学习的水果识别 opencv python

文章目录 0 前言2 开发简介3 识别原理3.1 传统图像识别原理3.2 深度学习水果识别 4 数据集5 部分关键代码5.1 处理训练集的数据结构5.2 模型网络结构5.3 训练模型 6 识别效果7 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习…

外包干了8个月,技术退步明显.......

先说一下自己的情况,大专生,18年通过校招进入武汉某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

开源代驾上门预约小程序源码系统:预约代驾,出行更无忧 附带完整的搭建教程

随着人们生活水平的提高,越来越多的人选择代驾服务。为了方便用户预约代驾,罗峰来给大家分享一款开源代驾上门预约系统。该系统具有以下特色功能,让出行更加无忧。 以下是部分代码示例: 系统特色功能一览:​​​​​​…

【计算机网络笔记】物理层——信道与信道容量

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

理解依赖注入

1 回顾Spring IoC容器 1.1 Spring IoC容器 Web应用程序由大量的程序组件组成,这些组件一起工作完成业务逻辑的执行。 这些组件通常是一个依赖另一个,互相协作实现所需功能。 Spring提供容器,也就是IoC容器,来管理这些组件&…

万界星空科技MES系统在工业生产中的应用

万界星空科技MES系统在工业生产中的应用广泛。它适用于各类制造业,包括汽车制造、电子制造、注塑、能源化工、航天航空、食品加工、服装纺织、灯具、电线电缆、电机发动机、印刷包装等行业。 在汽车制造领域,MES系统可以实时追踪和控制整个生产过程&…

摄像头选型号指南

镜头选型工具 - HiTools - 海康威视 Hikvisionhttps://www.hikvision.com/cn/support/tools/hitools/cl8a9de13648c56d7f/ 1. 海康威视摄像头选型号指南 海康威视摄像头选型号指南-CSDN博客文章浏览阅读3.7k次。跟客服对话比跟AI对话好不了多少,能噎死人&#xff0…

graphics.h安装后依旧报错

问题解决一: 我在网上找了很多,都说找到graphics.h这个文件,放到include这个目录下,我照做了,然后 当我进行编译时,自动跳到graphics.h这个文件并出现一堆报错 问题解决二: 看一下这两个文件是…

【优选算法系列】【专题三二分查找】第二节.35. 搜索插入位置和69. x 的平方根

文章目录 前言一、搜索插入位置 1.1 题目描述 1.2 题目解析 1.2.1 算法原理 1.2.2 代码编写 1.2.3 题目总结二、x 的平方根 2.1 题目描述 2.2 题目解析 2.2.1 算法原理 2.2.2 代码编写 …

思腾云计算中心 | 5千平米超大空间,基础设施完善,提供裸金属GPU算力租赁业务

2021年,思腾合力全资收购包头市易慧信息科技有限公司,正式开启云计算业务。思腾云计算中心占地2400平米,位于包头市稀土高新区,毗邻多家知名企业,地理位置优越,交通便利,是区内重要的信息化产业…

深度学习火车票识别系统 计算机竞赛

文章目录 0 前言1 课题意义课题难点: 2 实现方法2.1 图像预处理2.2 字符分割2.3 字符识别部分实现代码 3 实现效果4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 图像识别 火车票识别系统 该项目较为新颖,适…

小航助学题库白名单竞赛考级蓝桥杯等考scratch(11级)(含题库教师学生账号)

需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号) 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号)

小航助学题库白名单竞赛考级蓝桥杯等考scratch(6级)(含题库教师学生账号)

需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号) 需要在线模拟训练的题库账号请点击 小航助学编程在线模拟试卷系统(含题库答题软件账号)

认知觉醒(四)

认知觉醒(四) 第三节 耐心:得耐心者得天下 20世纪八九十年代,金庸的武侠小说风靡全国。如今,虽然几十年过去了,金庸先生也已与世长辞,但他留下的作品依然广受欢迎,被奉为经典。如此成就,自然…

游戏:火星孤征 - deliver us mars - 美图秀秀~~

今天水一篇,借着免费周下载了deliver us mars,玩下来截了好多图,就放这里了。 游戏没有难度,剧情也不难理解,美图到处都是,建模细节也是满满,值得一玩。 游戏中的 A.S.E是守卫飞行机器人&…

HarmonyOS鸿蒙操作系统架构

目录 1. 分布式架构: 2. 统一的开发平台: 3. 多内核共享: 4. 自适应界面: 5. AR、VR、MR支持: 6. 安全和隐私保护: 7. AI集成: 8. 应用生态系统: 9. 开源和开放&#xff1a…

Vue实现条件渲染

📑前言 本文主要是【Vue】——Vue实现条件渲染的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 🌄每日一句&am…

Superset基础入门

1 Superset概述 Apache Superset 是一个现代的数据探索和可视化平台。它功能强大且十分易用,可对接 各种数据源,包括很多现代的大数据分析引擎,拥有丰富的图表展示形式,并且支持自定义 仪表盘。 2 Superset安装 Superset 是由 P…