Python+OpenCV实现最强自动扫雷

文章目录

    • 准备
    • 实现思路
    • 窗体截取
    • 雷块分割
    • 雷块识别
    • 扫雷算法实现
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


用Python+OpenCV实现了自动扫雷,突破世界记录,我们先来看一下效果吧。

中级 - 0.74秒 3BV/S=60.81

相信许多人很早就知道有扫雷这么一款经典的游(显卡测试)戏(软件),更是有不少人曾听说过中国雷圣,也是中国扫雷第一、世界综合排名第二的郭蔚嘉的顶顶大名。扫雷作为一款在Windows9x时代就已经诞生的经典游戏,从过去到现在依然都有着它独特的魅力:快节奏高精准的鼠标操作要求、快速的反应能力、刷新纪录的快感,这些都是扫雷给雷友们带来的、只属于扫雷的独一无二的兴奋点。

准备

准备动手制作一套扫雷自动化软件之前,你需要准备如下一些工具/软件/环境

- 开发环境

  1. Python3 环境 - 推荐3.6或者以上 [更加推荐Anaconda3,以下很多依赖库无需安装]
  2. numpy依赖库 [如有Anaconda则无需安装]
  3. PIL依赖库 [如有Anaconda则无需安装]
  4. opencv-python
  5. win32gui、win32api依赖库
  6. 支持Python的IDE [可选,如果你能忍受用文本编辑器写程序也可以]

- 扫雷软件

· Minesweeper Arbiter(必须使用MS-Arbiter来进行扫雷!)

好啦,那么我们的准备工作已经全部完成了!让我们开始吧~

实现思路

在去做一件事情之前最重要的是什么? 是将要做的这件事情在心中搭建一个步骤框架。 只有这样,才能保证在去做这件事的过程中,尽可能的做到深思熟虑,使得最终有个好的结果。 我们写程序也要尽可能做到在正式开始开发之前,在心中有个大致的思路。

对于本项目而言,大致的开发过程是这样的:

  • 完成窗体内容截取部分
  • 完成雷块分割部分
  • 完成雷块类型识别部分
  • 完成扫雷算法

好啦,既然我们有了个思路,那就撸起袖子大力干!

窗体截取

其实对于本项目而言,窗体截取是一个逻辑上简单,实现起来却相当麻烦的部分,而且还是必不可少的部分。 我们通过Spy++得到了以下两点信息:

class\_name = "TMain"
title\_name = "Minesweeper Arbiter "

  • ms_arbiter.exe的主窗体类别为"TMain"
  • ms_arbiter.exe的主窗体名称为"Minesweeper Arbiter "

注意到了么?主窗体的名称后面有个空格。正是这个空格让笔者困扰了一会儿,只有加上这个空格,win32gui才能够正常的获取到窗体的句柄。

本项目采用了win32gui来获取窗体的位置信息,具体代码如下:

hwnd = win32gui.FindWindow(class\_name, title\_name)
if hwnd:
left, top, right, bottom = win32gui.GetWindowRect(hwnd)

通过以上代码,我们得到了窗体相对于整块屏幕的位置。之后我们需要通过PIL来进行扫雷界面的棋盘截取。

我们需要先导入PIL库

from PIL import ImageGrab

然后进行具体的操作。

left += 15
top += 101
right -= 15
bottom -= 43
 
 
rect = (left, top, right, bottom)
img = ImageGrab.grab().crop(rect)

聪明的你肯定一眼就发现了那些奇奇怪怪的Magic Numbers,没错,这的确是Magic Numbers,是我们通过一点点细微调节得到的整个棋盘相对于窗体的位置。

注意:这些数据仅在Windows10下测试通过,如果在别的Windows系统下,不保证相对位置的正确性,因为老版本的系统可能有不同宽度的窗体边框。

橙色的区域是我们所需要的

好啦,棋盘的图像我们有了,下一步就是对各个雷块进行图像分割了~

雷块分割

在进行雷块分割之前,我们事先需要了解雷块的尺寸以及它的边框大小。经过笔者的测量,在ms_arbiter下,每一个雷块的尺寸为16px*16px。

知道了雷块的尺寸,我们就可以进行每一个雷块的裁剪了。首先我们需要知道在横和竖两个方向上雷块的数量。

block\_width, block\_height = 16, 16
  blocks\_x = int((right - left) / block\_width)
  blocks\_y = int((bottom - top) / block\_height)

之后,我们建立一个二维数组用于存储每一个雷块的图像,并且进行图像分割,保存在之前建立的数组中。

def crop\_block(hole\_img, x, y):
        x1, y1 = x \* block\_width, y \* block\_height
        x2, y2 = x1 + block\_width, y1 + block\_height
return hole\_img.crop((x1, y1, x2, y2))
 
 
blocks\_img = \[\[0 for i in range(blocks\_y)\] for i in range(blocks\_x)\]
 
 
for y in range(blocks\_y):
for x in range(blocks\_x):
        blocks\_img\[x\]\[y\] = crop\_block(img, x, y)

将整个图像获取、分割的部分封装成一个库,随时调用就OK啦~在笔者的实现中,我们将这一部分封装成了imageProcess.py,其中函数get_frame()用于完成上述的图像获取、分割过程。

雷块识别

这一部分可能是整 个项目里除了扫雷算法本身之外最重要的部分了。 笔者在进行雷块检测的时候采用了比较简单的特征,高效并且可以满足要求。

def analyze\_block(self, block, location):
    block = imageProcess.pil\_to\_cv(block)
 
 
    block\_color = block\[8, 8\]
    x, y = location\[0\], location\[1\]
 
 
    # -1:Not opened
    # -2:Opened but blank
    # -3:Un initialized
 
 
    # Opened
if self.equal(block\_color, self.rgb\_to\_bgr((192, 192, 192))):
if not self.equal(block\[8, 1\], self.rgb\_to\_bgr((255, 255, 255))):
self.blocks\_num\[x\]\[y\] = -2
self.is\_started = True
else:
self.blocks\_num\[x\]\[y\] = -1
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((0, 0, 255))):
self.blocks\_num\[x\]\[y\] = 1
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((0, 128, 0))):
self.blocks\_num\[x\]\[y\] = 2
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((255, 0, 0))):
self.blocks\_num\[x\]\[y\] = 3
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((0, 0, 128))):
self.blocks\_num\[x\]\[y\] = 4
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((128, 0, 0))):
self.blocks\_num\[x\]\[y\] = 5
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((0, 128, 128))):
self.blocks\_num\[x\]\[y\] = 6
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((0, 0, 0))):
if self.equal(block\[6, 6\], self.rgb\_to\_bgr((255, 255, 255))):
            # Is mine
self.blocks\_num\[x\]\[y\] = 9
        elif self.equal(block\[5, 8\], self.rgb\_to\_bgr((255, 0, 0))):
            # Is flag
self.blocks\_num\[x\]\[y\] = 0
else:
self.blocks\_num\[x\]\[y\] = 7
 
 
    elif self.equal(block\_color, self.rgb\_to\_bgr((128, 128, 128))):
self.blocks\_num\[x\]\[y\] = 8
else:
self.blocks\_num\[x\]\[y\] = -3
self.is\_mine\_form = False
 
 
if self.blocks\_num\[x\]\[y\] == -3 or not self.blocks\_num\[x\]\[y\] == -1:
self.is\_new\_start = False

可以看到,我们采用了读取每个雷块的中心点像素的方式来判断雷块的类别,并且针对插旗、未点开、已点开但是空白等情况进行了进一步判断。具体色值是笔者直接取色得到的,并且屏幕截图的色彩也没有经过压缩,所以通过中心像素结合其他特征点来判断类别已经足够了,并且做到了高效率。

在本项目中,我们实现的时候采用了如下标注方式:

  • 1-8:表示数字1到8
  • 9:表示是地雷
  • 0:表示插旗
  • -1:表示未打开
  • -2:表示打开但是空白
  • -3:表示不是扫雷游戏中的任何方块类型

通过这种简单快速又有效的方式,我们成功实现了高效率的图像识别。

扫雷算法实现

这可能是本篇文章最激动人心的部分了。 在这里我们需要先说明一下具体的扫雷算法思路:

  1. 遍历每一个已经有数字的雷块,判断在它周围的九宫格内未被打开的雷块数量是否和本身数字相同,如果相同则表明周围九宫格内全部都是地雷,进行标记。
  2. 再次遍历每一个有数字的雷块,取九宫格范围内所有未被打开的雷块,去除已经被上一次遍历标记为地雷的雷块,记录并且点开。
  3. 如果以上方式无法继续进行,那么说明遇到了死局,选择在当前所有未打开的雷块中随机点击。(当然这个方法不是最优的,有更加优秀的解决方案,但是实现相对麻烦)

基本的扫雷流程就是这样,那么让我们来亲手实现它吧~

首先我们需要一个能够找出一个雷块的九宫格范围的所有方块位置的方法。因为扫雷游戏的特殊性,在棋盘的四边是没有九宫格的边缘部分的,所以我们需要筛选来排除掉可能超过边界的访问。

def generate\_kernel(k, k\_width, k\_height, block\_location):
 
 
     ls = \[\]
     loc\_x, loc\_y = block\_location\[0\], block\_location\[1\]
 
 
for now\_y in range(k\_height):
for now\_x in range(k\_width):
if k\[now\_y\]\[now\_x\]:
                 rel\_x, rel\_y = now\_x - 1, now\_y - 1
                 ls.append((loc\_y + rel\_y, loc\_x + rel\_x))
return ls
 
 
 kernel\_width, kernel\_height = 3, 3
 
 
# Kernel mode:\[Row\]\[Col\]
 kernel = \[\[1, 1, 1\], \[1, 1, 1\], \[1, 1, 1\]\]
 
 
# Left border
if x == 0:
for i in range(kernel\_height):
         kernel\[i\]\[0\] = 0
 
 
# Right border
if x == self.blocks\_x - 1:
for i in range(kernel\_height):
         kernel\[i\]\[kernel\_width - 1\] = 0
 
 
# Top border
if y == 0:
for i in range(kernel\_width):
         kernel\[0\]\[i\] = 0
 
 
# Bottom border
if y == self.blocks\_y - 1:
for i in range(kernel\_width):
         kernel\[kernel\_height - 1\]\[i\] = 0
 
 
# Generate the search map
 to\_visit = generate\_kernel(kernel, kernel\_width, kernel\_height, location)

我们在这一部分通过检测当前雷块是否在棋盘的各个边缘来进行核的删除(在核中,1为保留,0为舍弃),之后通过generate_kernel函数来进行最终坐标的生成。

def count\_unopen\_blocks(blocks):
    count = 0
for single\_block in blocks:
if self.blocks\_num\[single\_block\[1\]\]\[single\_block\[0\]\] == -1:
            count += 1
return count
 
 
def mark\_as\_mine(blocks):
for single\_block in blocks:
if self.blocks\_num\[single\_block\[1\]\]\[single\_block\[0\]\] == -1:
self.blocks\_is\_mine\[single\_block\[1\]\]\[single\_block\[0\]\] = 1
 
 
unopen\_blocks = count\_unopen\_blocks(to\_visit)
if unopen\_blocks == self.blocks\_num\[x\]\[y\]:
     mark\_as\_mine(to\_visit)

在完成核的生成之后,我们有了一个需要去检测的雷块“地址簿”:to_visit。之后,我们通过count_unopen_blocks函数来统计周围九宫格范围的未打开数量,并且和当前雷块的数字进行比对,如果相等则将所有九宫格内雷块通过mark_as_mine函数来标注为地雷。

def mark\_to\_click\_block(blocks):
for single\_block in blocks:
 
 
# Not Mine
if not self.blocks\_is\_mine\[single\_block\[1\]\]\[single\_block\[0\]\] == 1:
# Click-able
if self.blocks\_num\[single\_block\[1\]\]\[single\_block\[0\]\] == -1:
 
 
# Source Syntax: \[y\]\[x\] - Converted
if not (single\_block\[1\], single\_block\[0\]) in self.next\_steps:
self.next\_steps.append((single\_block\[1\], single\_block\[0\]))
 
 
def count\_mines(blocks):
    count = 0
for single\_block in blocks:
if self.blocks\_is\_mine\[single\_block\[1\]\]\[single\_block\[0\]\] == 1:
            count += 1
return count
 
 
mines\_count = count\_mines(to\_visit)
 
 
if mines\_count == block:
    mark\_to\_click\_block(to\_visit)

扫雷流程中的第二步我们也采用了和第一步相近的方法来实现。先用和第一步完全一样的方法来生成需要访问的雷块的核,之后生成具体的雷块位置,通过count_mines函数来获取九宫格范围内所有雷块的数量,并且判断当前九宫格内所有雷块是否已经被检测出来。

如果是,则通过mark_to_click_block函数来排除九宫格内已经被标记为地雷的雷块,并且将剩余的安全雷块加入next_steps数组内。

\# Analyze the number of blocks
self.iterate\_blocks\_image(BoomMine.analyze\_block)
 
 
# Mark all mines
self.iterate\_blocks\_number(BoomMine.detect\_mine)
 
 
# Calculate where to click
self.iterate\_blocks\_number(BoomMine.detect\_to\_click\_block)
 
 
if self.is\_in\_form(mouseOperation.get\_mouse\_point()):
for to\_click in self.next\_steps:
         on\_screen\_location = self.rel\_loc\_to\_real(to\_click)
         mouseOperation.mouse\_move(on\_screen\_location\[0\], on\_screen\_location\[1\])
         mouseOperation.mouse\_click()

在最终的实现内,笔者将几个过程都封装成为了函数,并且可以通过iterate_blocks_number方法来对所有雷块都使用传入的函数来进行处理,这有点类似Python中Filter的作用。

之后笔者做的工作就是判断当前鼠标位置是否在棋盘之内,如果是,就会自动开始识别并且点击。具体的点击部分,笔者采用了作者为"wp"的一份代码(从互联网搜集而得),里面实现了基于win32api的窗体消息发送工作,进而完成了鼠标移动和点击的操作。具体实现封装在mouseOperation.py中,有兴趣可以在文末的Github Repo中查看。


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,希望提供给想学习 Python 的小伙伴们一点帮助!

保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以保存图片微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/215652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++初阶】六、类和对象(初始化列表、static成员、友元、内部类)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【C初阶】五、类和对象 (日期类的完善、流运算符重载函数、const成员、“&”取地址运算符重载)-CSDN博客 目录 ​​​​​​​一 . 初始化列表 构造函数…

涵盖多种功能,龙讯旷腾Module第三期:光、磁、力学和极化性质

Module是什么 在PWmat的基础功能上,我们针对用户的使用需求开发了一些顶层模块(Module)。这些Module中的一部分是与已有的优秀工具的接口,一部分是以PWmat的计算结果为基础得到实际需要的物理量,一部分则是为特定的计…

孩子都能学会的FPGA:第二十课——用FPGA实现定点数的开方运算

(原创声明:该文是作者的原创,面向对象是FPGA入门者,后续会有进阶的高级教程。宗旨是让每个想做FPGA的人轻松入门,作者不光让大家知其然,还要让大家知其所以然!每个工程作者都搭建了全自动化的仿…

Cysteine Protease inhibitor半胱氨酸蛋白酶抑制剂

Cysteine Protease inhibitor 半胱氨酸蛋白酶抑制剂 921625-62-9 英文名称:Cysteine Protease inhibitor 中文名称:半胱氨酸蛋白酶抑制剂 化学名称:5-氨基-3-苯基-1,2,4-噻二唑 CAS:921625-62-9 外观:固体粉末 分子…

如何打印社保参保凭证

西安市: 陕西政务服务网: 个人服务 珠海市: 广东政务服务网: 用户登录 | 珠海市人力资源和社会保障网上服务平台 武汉市: 湖北政务服务网: 湖北政务服务网

基于Springboot的秒杀系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的秒杀系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&#xf…

Cesium 顶点吸附和区域拾取

Cesium 顶点吸附和区域拾取 基于深度实现可以自定义拾取范围大小 // 顶点吸附// const result pickAreaHelper.pickNearest(viewer.scene, movement.endPosition, 32, 32);// 区域拾取const result pickAreaHelper.pickArea(viewer.scene, movement.endPosition, 32, 32);顶…

maven篇---第三篇

系列文章目录 文章目录 系列文章目录前言一、如何解决依赖传递引起的版本冲突?二、说说maven的依赖原则三、说说依赖的解析机制?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享…

硬件基础:MOS管

MOSFET概述 MOSFET由MOS(Metal Oxide Semiconductor金属氧化物半导体)FET(Field Effect Transistor场效应晶体管)这个两个缩写组成,即全称为金属氧化物场效应管,简称MOS管。 即通过给金属层(M-金属铝)的栅极和隔着氧化层(O-绝缘层SiO2)的源极施加电压&am…

【Erlang进阶学习】4、进程与消息传递

在Erlang系统中,进程都是轻量级的,意味着创建进程只需要花费微不足道的时间和极少的内存。 1、进程间不共享内存,而是通过消息传递来通信。 2、消息从发送进程的栈上复制到接收进程的堆上。 3、由于多个进程并发地在独立的内存空间执行&#…

easyrecovery2024最新破解版激活密钥

平时很多人都会把自己工作时,或者生活中的数据存储在我们的电脑上,很多时候,由于我们的误操作或者是其它某些问题,很容易就会误删除一些文件数据了,尤其是一些电脑出现故障,总是会导致数据丢失,…

【flink番外篇】1、flink的23种常用算子介绍及详细示例(1)- map、flatmap和filter

Flink 系列文章 1、Flink 专栏等系列综合文章链接 文章目录 Flink 系列文章一、Flink的23种算子说明及示例1、maven依赖2、java bean3、map4、flatmap5、Filter 本文主要介绍Flink 的3种常用的operator(map、flatmap和filter)及以具体可运行示例进行说明…

kubernetes(k8s)容器内无法连接同所绑定的Service ClusterIP问题记录

kubernetes(k8s)容器内无法连接同所绑定的Service ClusterIP问题记录 1. k8s环境 k8s使用kubernetes-server-linux-amd64_1.19.10.tar.gz 二进制bin 的方式手动部署 k8s 版本: [rootmaster ~]# kubectl version Client Version: version.Info{Major:"1", Minor:&…

【python】——函数

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

【改进YOLOV8】融合动态蛇形卷积&DCNV2的草莓分级分割分割系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着计算机视觉技术的不断发展,图像分割成为了一个重要的研究领域。图像分割可以将图像中的不同对象或区域进行分离,从而更好地理解图像内…

在 App 设计工具的代码视图中管理代码

目录 管理组件、函数和属性 识别代码中的可编辑部分 编写 App 管理 UI 组件 管理回调 在 App 中共享数据 在多个位置运行的单一源代码 创建输入参数 为您的 App 添加帮助文本 限制您的 App 一次只运行一个实例 修复代码问题和运行时错误 个性化代码视图外观 更改颜…

线程的使用1

1. 创建一个线程 1.1 创建线程练习 线程实际上是应用层的概念,在 Linux 内核中,所有的调度实体都被称为任务 (task) , 他们之间的区别是:有些任务自己拥有一套完整的资源,而有些任务彼此之间共享一套资源 对此函数的使…

【C++】简单的C++程序编译

一、简单的C程序 //prog.cc int main() {return 0; }二、编译 1. win11命令终端 cc prog.cc 2. win11 Visual Studio命令终端 cl /EHsc /W4 prog.cc 3. GNU编译器 g -Wall -o prog prog.cc 三、运行 1.win11 prog 2.Unix/Linux ./prog 四、查看返回值 1.win11 路…

本地存储与复杂数据类型转换

1. 本地存储介绍 2.1 本地存储分类 - localStorage // 存储一个名字localStorage.setItem(uname, abc)// 获取名字console.log(localStorage.getItem(uname));// 删除本地存储 只删名字// localStorage.removeItem(uname)// 改localStorage.setItem(uname, aaa)// 存一个年龄 …

网络运维与网络安全 学习笔记2023.11.30

网络运维与网络安全 学习笔记 第三十一天 今日目标 实现AP自动注册、配置WLAN业务参数、无线终端通过wifi互访 实现AP自动注册 项目背景 企业内网的大量AP已经通过DHCP的方式获得IP地址 为了实现后期大量AP的统一管理,希望通过AC实现集中控制 在AC设备上&#…