大数据技术学习笔记(七)—— Zookeeper

目录

  • 1 Zookeeper 概述
    • 1.1 Zookeeper 定义
    • 1.2 Zookeeper 工作机制
    • 1.3 Zookeeper 特点
    • 1.4 数据结构
    • 1.5 应用场景
  • 2 Zookeeper 安装
  • 3 客户端命令行操作
  • 4 Zookeeper 的 Java 客户端操作
    • 4.1 IDEA 环境搭建
    • 4.2 初始化 ZooKeeper 客户端
    • 4.3 创建子节点
    • 4.4 获取子节点
    • 4.5 判断Znode是否存在
    • 4.6 获取子节点存储的数据
    • 4.7 设置节点的值
    • 4.8 删除节点
  • 5 Zookeeper 内部原理
    • 5.1 节点类型
    • 5.2 Stat 结构体
    • 5.3 监听器原理(重点)
    • 5.4 选举机制(重点)
    • 5.5 写数据流程

1 Zookeeper 概述

1.1 Zookeeper 定义


Zookeeper 是一个 开源分布式 的,为分布式应用提供协调服务的 Apache 项目。

Zookeeper 从设计模式角度来理解,是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生了变化,Zookeeper 就负责通知已经在 Zookeeper 上注册的那些观察者做出相应的反应。

1.2 Zookeeper 工作机制


在这里插入图片描述

1.3 Zookeeper 特点


在这里插入图片描述

  • Zookeeper:一个领导者(Leader),多个跟随者(Follower)组成的集群。
  • 集群中只要有 半数以上 节点存活,Zookeeper 集群就能正常服务。
  • 全局数据一致性:每个 Server 保存一份相同的数据副本,Client 无论连接到哪个server,数据都是一致的。
  • 更新请求 顺序 进行,来自同一个 Client 的更新请求按其发送顺序依次执行。
  • 数据更新原子性,一次数据更新要么成功,要么失败(保证了数据一致性)。
  • 实时性,在一定时间范围内,Client能读到最新数据。

1.4 数据结构


ZooKeeper 数据模型的结构与 Unix 文件系统很类似,整体上可以看作是一棵树,每个节点称做一个 ZNode。每一个 ZNode 默认能够存储 1MB 的数据,每个 ZNode 都可以通过其路径唯一标识。

在这里插入图片描述

ZooKeeper 中不存在文件的概念,节点中存储的直接就是内容

1.5 应用场景


提供的服务包括:统一命名服务、统一配置管理、统一集群管理、服务器节点动态上下线、软负载均衡等。

(1)统一命名服务

在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。
例如:IP不容易记住,而域名容易记住。

在这里插入图片描述

(2)统一配置管理

  • 分布式环境下,配置文件同步非常常见。
    • 一般要求一个集群中,所有节点的配置信息是一致的,比如 Kafka 集群。
    • 对配置文件修改后,希望能够快速同步到各个节点上。
  • 配置管理可交由 ZooKeeper 实现。
    • 可将配置信息写入 ZooKeeper 上的一个Znode。
    • 各个客户端服务器监听这个Znode。
    • 一旦 Znode 中的数据被修改,ZooKeeper 将通知各个客户端服务器。

在这里插入图片描述

(3)统一集群管理

  • 分布式环境中,实时掌握每个节点的状态是必要的。
    • 可根据节点实时状态做出一些调整。
  • ZooKeeper 可以实现实时监控节点状态变化
    • 可将节点信息写入 ZooKeeper 上的一个ZNode。
    • 监听这个 ZNode 可获取它的实时状态变化。

在这里插入图片描述
(4)服务器节点动态上下线

在这里插入图片描述

(5)软负载均衡

在 Zookeeper 中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求

在这里插入图片描述

软负载均衡即从软件层面(配置)实现负载均衡, 硬负载均衡即从硬件层面实现负载均衡。

2 Zookeeper 安装


见博客 Zookeeper 安装与部署

3 客户端命令行操作


集群启动 Zookeeper 后,每一台机器上启动的都是服务端,要操作客户端,还需要启动客户端(最好是新开一个shell窗口单独作为客户端)。

[huwei@hadoop101 ~]$ cd /opt/module/zookeeper-3.5.7
[huwei@hadoop101 zookeeper-3.5.7]$ bin/zkCli.sh -server hadoop101:2181

由于 zookeeper 的数据都是同步的,客户端连接到 hadoop101、hadoop102、hadoop103 哪个机器都是 OK 的

在这里插入图片描述

(1)查看当前 znode 中所包含的节点

[zk: hadoop101:2181(CONNECTED) 0] ls /
[zookeeper]
[zk: hadoop101:2181(CONNECTED) 1] ls /zookeeper
[config, quota]
[zk: hadoop101:2181(CONNECTED) 2] ls /zookeeper/config
[]

(2)查看当前节点详细数据

[zk: hadoop101:2181(CONNECTED) 3] ls -s /
[zookeeper]cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0x0
cversion = -1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 1

(3)创建普通节点

无法同时创建多级节点,除非父级节点存在,也可以在创建节点时指定节点的内容

[zk: hadoop101:2181(CONNECTED) 4] create /sanguo
Created /sanguo
[zk: hadoop101:2181(CONNECTED) 5] ls /
[sanguo, zookeeper]
[zk: hadoop101:2181(CONNECTED) 6] create /sanguo/shuguo "liubei"
Created /sanguo/shuguo

当创建临时节点时,在当前客户端是能查看到的,退出当前客户端然后再重启客户端,再次查看会发现临时节点已经删除

(4)创建带序号的节点

先创建一个普通节点

[zk: hadoop101:2181(CONNECTED) 7] create /sanguo/weiguo "caocao"
Created /sanguo/weiguo

再创建带序号的节点

[zk: hadoop101:2181(CONNECTED) 8] create -s /sanguo/weiguo "caocao"
Created /sanguo/weiguo0000000002
[zk: hadoop101:2181(CONNECTED) 9] ls /sanguo
[shuguo, weiguo, weiguo0000000002]

如果节点下原来没有子节点,序号从0开始依次递增。如果原节点下已有2个节点,则再排序时从2开始,以此类推。

(5)获取节点的值

[zk: hadoop101:2181(CONNECTED) 10] get /sanguo/shuguo
liubei

(6)修改节点的值

[zk: hadoop101:2181(CONNECTED) 11] set /sanguo/shuguo "kongming"
[zk: hadoop101:2181(CONNECTED) 12] get /sanguo/shuguo
kongming

(7)节点的值变化监听

在 hadoop102 主机上注册监听 /sanguo 节点数据变化

[huwei@hadoop102 zookeeper-3.5.7]$ bin/zkCli.sh
[zk: localhost:2181(CONNECTED) 0] get -w /sanguo
null

在 hadoop101 主机上修改 /sanguo 节点数据

[zk: hadoop101:2181(CONNECTED) 13] set /sanguo "simayi"

此时,在 hadoop102 主机上见听到了 /sanguo 节点数据的变化

在这里插入图片描述

同理,ls命令也可以加参数 -w ,当新创建或删除文件后,可监听文件的变化

(8)查看节点的状态

[zk: hadoop101:2181(CONNECTED) 14] stat /sanguo
cZxid = 0x200000002
ctime = Sun Dec 03 15:31:07 CST 2023
mZxid = 0x200000008
mtime = Sun Dec 03 16:02:16 CST 2023
pZxid = 0x200000005
cversion = 3
dataVersion = 1
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 6
numChildren = 3

(9)删除节点

[zk: hadoop101:2181(CONNECTED) 15] delete /sanguo
Node not empty: /sanguo
[zk: hadoop101:2181(CONNECTED) 16] delete /sanguo/weiguo0000000002

只能删除内容为空的节点

(10)递归删除节点

[zk: hadoop101:2181(CONNECTED) 17] deleteall /sanguo

可以递归地删除内容非空的节点

4 Zookeeper 的 Java 客户端操作

4.1 IDEA 环境搭建


(1)创建一个Maven Module
(2)添加 pom 文件

<dependencies>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>RELEASE</version>
		</dependency>
		<dependency>
			<groupId>org.apache.logging.log4j</groupId>
			<artifactId>log4j-core</artifactId>
			<version>2.8.2</version>
		</dependency>
		<dependency>
			<groupId>org.apache.zookeeper</groupId>
			<artifactId>zookeeper</artifactId>
			<version>3.5.7</version>
		</dependency>
</dependencies>

(3)配置 log4j.properties文件

需要在项目的 src/main/resources 目录下,新建一个文件,命名为log4j.properties,在文件中填入以下内容

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

4.2 初始化 ZooKeeper 客户端


public class ZookeeperTest {

    private ZooKeeper zkClient;
    private String connectString;
    private int sessionTimeout;

    /**
     获取客户端对象
     */
    @Before
    public void init() throws IOException {
        connectString = "hadoop102:2181,hadoop103:2181,hadoop104:2181";
        int sessionTimeout = 10000; // 单位毫秒,一般设置10000~40000
        //参数1 connectString,连接zk服务的地址
        //参数2 sessionTimeout,超时时间
        //参数3 当前客户端默认的监控器
        zkClient = new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
            }
        });
    }

    /**
     * 关闭客户端对象
     */
    @After
    public void close() throws InterruptedException {
        zkClient.close();
    }
}

4.3 创建子节点


@Test
public void create() throws InterruptedException, KeeperException {
    //参数1 指定创建节点的路径
    //参数2 指定要创建节点下的数据
    //参数3 对操作用户进行权限控制
    //参数4 节点类型、短暂、持久、短暂带序号、持久带序号
    zkClient.create("/sanguo", "liubei".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
}

4.4 获取子节点


(1)获取子节点列表,不监听

/**
 * 获取节点,不监听
 */
@Test
public void get() throws InterruptedException, KeeperException {
    //参数1 指定获取节点的路径
    //参数2 是否监听
    List<String> children = zkClient.getChildren("/", false);
    System.out.println(children);
    for (String child : children) {
        System.out.println(child); // 获取每一个节点名称
    }
}

(2)获取子节点列表,并监听

/**
 * 获取节点,监听
 */
@Test
public void getAndWatch() throws InterruptedException, KeeperException {
    //参数1 指定获取节点的路径
    //参数2 是否监听
    //参数3 当前客户端默认的监控器
    List<String> children = zkClient.getChildren("/", new Watcher() {
        public void process(WatchedEvent watchedEvent) {
            System.out.println("根目录下的节点有变化");
        }
    });
    System.out.println(children);
    for (String child : children) {
        System.out.println(child); // 获取每一个节点名称
    }

    //因为设置了监听,所以当前线程不能结束
    Thread.sleep(Long.MAX_VALUE);
}

启动,再去根目录下创建一个新节点

[zk: localhost:2181(CONNECTED) 2] create /shuihu
Created /shuihu

查看 IDEA 终端
在这里插入图片描述

4.5 判断Znode是否存在


/**
 * 判断Znode是否存在
 */
@Test
public void exist() throws InterruptedException, KeeperException {
    //参数1 指定判断节点的路径
    //参数2 是否监听
    Stat stat = zkClient.exists("/xiyou", false);
    System.out.println(stat == null ? "not exist" : "exist");
}

4.6 获取子节点存储的数据


/**
 * 获取子节点存储的数据
 */
@Test
public void getData() throws InterruptedException, KeeperException {
    //判断节点是否存在
    Stat stat = zkClient.exists("/sanguo", false);
    if (stat == null) {
        System.out.println("节点不存在...");
        return;
    }
    //参数1 指定判断节点的路径
    //参数2 是否监听
    byte[] data = zkClient.getData("/sanguo", false, stat);
    System.out.println(new String(data));
}

4.7 设置节点的值


/**
 * 设置节点的值
 */
@Test
public void set() throws KeeperException, InterruptedException {
    //判断节点是否存在
    Stat stat = zkClient.exists("/sanguo", false);
    if (stat == null) {
        System.out.println("节点不存在...");
        return;
    }
    //参数1 指定判断节点的路径
    //参数2 节点的值
    //参数3 版本号
    zkClient.setData("/sanguo", "caocao".getBytes(), stat.getVersion());
}

参数3 版本号也可以写 -1,但不能不传这个参数

4.8 删除节点


(1)删除空节点

/**
 * 删除空节点
 */
@Test
public void delete() throws KeeperException, InterruptedException {
    //判断节点是否存在
    Stat stat = zkClient.exists("/aaa", false);
    if (stat == null) {
        System.out.println("节点不存在...");
        return;
    }
    zkClient.delete("/aaa", stat.getVersion());
}

(2)删除非空节点,递归实现

/**
 * 删除非空节点,递归实现
 */
//封装一个方法,方便递归调用
public void deleteAll(String path, ZooKeeper zk) throws KeeperException, InterruptedException {
    //判断节点是否存在
    Stat stat = zkClient.exists(path, false);
    if (stat == null) {
        System.out.println("节点不存在...");
        return;
    }
    //先获取当前传入节点下的所有子节点
    List<String> children = zk.getChildren(path, false);
    if (children.isEmpty()) {
        //说明传入的节点没有子节点,可以直接删除
        zk.delete(path, stat.getVersion());
    } else {
        //如果传入的节点有子节点,循环所有子节点
        for (String child : children) {
            //删除子节点,但是不知道子节点下面还有没有子节点,所以递归调用
            deleteAll(path + "/" + child, zk);
        }
        //删除完所有子节点以后,记得删除传入的节点
        zk.delete(path, stat.getVersion());
    }
}

//测试deleteAll
@Test
public void testDeleteAll() throws KeeperException, InterruptedException {
    deleteAll("/shuihu", zkClient);
}

5 Zookeeper 内部原理

5.1 节点类型


持久(Persistent):客户端和服务器端断开连接后,创建的节点不删除
短暂(Ephemeral):客户端和服务器端断开连接后,创建的节点自己删除

在这里插入图片描述

  • 持久化目录节点
    • 客户端与Zookeeper断开连接后,该节点依旧存在
  • 持久化顺序编号目录节点
    • 客户端与Zookeeper断开连接后,该节点依旧存在,只是 zookeeper 给该节点名称进行顺序编号
  • 临时目录节点
    • 客户端与Zookeeper断开连接后,该节点被删除
  • 临时顺序编号目录节点
    • 客户端与Zookeeper断开连接后,该节点被删除,只是 zookeeper 给该节点名称进行顺序编号

注意:创建 znode 时设置顺序标识,znode 名称后会附加一个值,顺序号是一个单调递增的计数器,由父节点维护,在分布式系统中,顺序号可以被用于为所有的事件进行全局排序,这样客户端可以通过顺序号推断事件的顺序

5.2 Stat 结构体


[zk: hadoop101:2181(CONNECTED) 18] stat /
cZxid = 0x0
ctime = Thu Jan 01 08:00:00 CST 1970
mZxid = 0x0
mtime = Thu Jan 01 08:00:00 CST 1970
pZxid = 0x20000000d
cversion = 1
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 0
numChildren = 1
  • czxid:创建节点的事务zxid

每次修改 ZooKeeper 状态都会收到一个zxid形式的时间戳,也就是ZooKeeper事务ID。事务ID是 ZooKeeper 中所有修改总的次序。每个修改都有唯一的zxid,如果zxid1小于zxid2,那么zxid1在zxid2之前发生。

  • ctime:znode:被创建的毫秒数(从1970年开始)
  • mzxid:znode:最后更新的事务zxid
  • mtime:znode:最后修改的毫秒数(从1970年开始)
  • pZxid:znode最后更新的子节点zxid
  • cversion:znode子节点变化号,znode子节点修改次数
  • dataversion:znode数据变化号
  • aclVersion:znode访问控制列表的变化号
  • ephemeralOwner:如果是临时节点,这个是znode拥有者的session id。如果不是临时节点则是0。
  • dataLength:znode的数据长度
  • numChildren:znode子节点数量

5.3 监听器原理(重点)


常见的监听

  • 监听节点数据的变化: get -w path
  • 监听子节点增减的变化: ls -w path

(1)首先要有一个 main() 线程
(2)在 main() 线程中创建 ZooKeeper 客户端,这时就会创建两个线程,一个负责网络连接通信(connet),一个负责监听(listener)
(3)客户端通过 connet 线程将注册的监听事件发送给 ZooKeeper
(4)在 ZooKeeper 的注册监听器列表中将注册的监听事件添加到列表中
(5)ZooKeeper 监听到有数据或路径的变化,就会将这个消息发送给 listener 线程
(6) 客户端 listener 线程内部调用 process() 方法做出相应处理

在这里插入图片描述

5.4 选举机制(重点)


半数机制:集群中半数以上机器存活,集群可用。所以 Zookeeper 适合安装 奇数台服务器。

一般情况下 Zookeeper 集群更推荐使用奇数台机器原因?

  • 在 Zookeeper 集群中 奇数台 和 偶数台(接近的台数) 机器的容错能力是一样的,所以在考虑资源节省的情况,我们推荐使用奇数台方案

Zookeeper 虽然在配置文件中并没有指定 Master 和 Slave。但是,Zookeeper工作时,是有一个节点为 Leader,其他则为Follower,Leader是通过内部的 选举机制 临时产生的。

选举机制总原则:集群中的每台机器都参与投票,通过交换选票信息得到每台机器的最终得票, 一旦出现得票数超过机器总数 一半以上 数量,当前机器即为 leader。

选票过程中每台机器怎么通信的?

  • 每台机器的 ip ,加上端口号 3888

以一个简单的例子来说明整个选举的过程。

假设有五台服务器组成的 Zookeeper 集群,它们的 id 从 1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的。假设这些服务器依序启动,来看看会发生什么。

在这里插入图片描述

(1)服务器 1 启动,发起一次选举。服务器 1 投自己一票。此时服务器 1 票数一票,不够半数以上(3票),选举无法完成,服务器 1 状态保持为 LOCKING

(2)服务器2启动,再发起一次选举。服务器 1 和 2 分别投自己一票并交换选票信息:此时服务器 1 发现服务器2的 ID 比自己目前投票推举的(服务器1)大,更改选票为推举服务器2。此时服务器 1 票数 0 票,服务器 2 票数 2 票,没有半数以上结果,选举无法完成,服务器1,2 状态保持 LOCKING

(3)服务器 3 启动,发起一次选举。此时服务器 1 和 2 都会更改选票为服务器 3。此次投票结果:服务器1为0票,服务器2为0票,服务器 3 为 3 票。此时服务器 3 的票数已经超过半数,服务器 3 当选 Leader。服务器 1,2 更改状态为 FOLLOWING,服务器3更改状态为LEADING

(4)服务器 4 启动,发现当前集群已经有 leader,它自己自动成为follower

(5)服务器5启动,同服务器 4一样。

以5台机器为例,当前集群正在使用(有数据/没数据),leader突然宕机的情况。

  • 当集群中的leader挂掉,集群会重新选出一个leader,此时首先会比较每一台机器的czxid,czxid最大的被选为leader。极端情况,czxid都相等的情况,那么就会直接比较myid。

5.5 写数据流程


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/213610.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

详解SpringAop开发过程中的坑

&#x1f609;&#x1f609; 学习交流群&#xff1a; ✅✅1&#xff1a;这是孙哥suns给大家的福利&#xff01; ✨✨2&#xff1a;我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 &#x1f96d;&#x1f96d;3&#xff1a;QQ群&#xff1a;583783…

Kubernetes实战(六)-多系统架构容器镜像构建实战

1 背景 最近在一个国产化项目中遇到了这样一个场景&#xff0c;在同一个 Kubernetes 集群中的节点是混合架构的&#xff0c;即其中某些节点的 CPU 架构是 x86 的&#xff0c;而另一些节点是 ARM 的。为了让镜像在这样的环境下运行&#xff0c;一种最简单的做法是根据节点类型为…

使用Java语言实现字母之间的大小写转换

这个类的作用为实现字母之间的大小写转换&#xff0c;通过加减32来完成。 输入的代码 import java.util.Scanner; public class WordChangeDemo {public static void main(String[] args){try (Scanner in new Scanner(System.in)) {System.out.println("请输入您要进…

springboot单元测试关闭日志

在logback中关闭日志 在test目录下新建文件夹resources&#xff0c;新增文件logback-test.xml文件 在logback-test.xml 文件中&#xff0c;添加内容&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <configuration><include resourc…

接口测试的简介及测试用例的设计

一&#xff0c;什么是接口 接口测试是测试系统组件间接口的一种测试。接口测试主要用于检测外部系统与系统之间以及内部各个子系统之间的交互点。测试的重点是要检查数据的交换&#xff0c;传递和控制管理过程&#xff0c;以及系统间的相互逻辑依赖关系等。 二&#xff0c;接口…

《python每天一小段》--(1)与GPT-3.5-turbo 模型进行对话

对话如图&#xff1a; 配置环境变量 APIKey如何获得这边不做说明 在Windows操作系统中&#xff0c;你可以按照以下步骤设置环境变量&#xff1a; 打开“控制面板”。在控制面板中&#xff0c;选择“系统和安全”。选择“系统”。在系统窗口中&#xff0c;选择“高级系统设置”…

6-3 求3*3整数矩阵对角线元素之和

#include<stdio.h>int main(){int a[3][3],sum0;int i ,j;printf("输入元素&#xff1a;\n");for(i0;i<3;i)for(j0;j<3;j)scanf("%d",&a[i][j]);for(i0;i<3;i)sumsuma[i][i];printf("总和为&#xff1a;%d",sum);return 0;}

Python:私人定制密码保险库 - Vault

简介&#xff1a;Vault是一种用于安全访问机密的工具。秘密是您想要严格控制访问权限的任何内容&#xff0c;例如API密钥、密码、证书等等。Vault为任何机密提供了统一的界面&#xff0c;同时提供了严格的访问控制并记录了详细的审核日志。 历史攻略&#xff1a; Python&…

C++基础 -36- 模板之模板函数

模板函数格式 template <class T> void allexchange(T a,T b) {T c;c*a;*a*b;*bc; }模板函数可以增强函数的通用性 举例说明&#xff0c;使用一个模板函数实现了两个的函数的功能 #include "iostream"using namespace std;void myexchangeint(int* a,int* …

Mac卸载、安装Python

卸载 说明 对于删除 Python&#xff0c;我们首先要知道其具体都安装了什么&#xff0c;实际上&#xff0c;在安装 Python 时&#xff0c;其自动生成&#xff1a; Python framework&#xff0c;即 Python 框架&#xff1b;Python 应用目录&#xff1b;指向 Python 的连接。 …

【Tkinter 入门教程】

【Tkinter 入门教程】 1. Tkinter库的简介&#xff1a;1.1 GUI编程1.2 Tkinter的定位 2. Hello word! 程序起飞2.1 第⼀个程序2.2 字体颜色主题 3. 组件讲解3.1 tkinter 的核⼼组件3.2 组件的使⽤3.3 标签Label3.3.1 标签显示内容3.3.2 多标签的应⽤程序3.3.3 总结 3.4 按钮but…

leetcode 201 数字范围按位与

leetcode 201 题目题解代码 题目 给你两个整数 left 和 right &#xff0c;表示区间 [left, right] &#xff0c;返回此区间内所有数字 按位与 的结果&#xff08;包含 left、right 端点&#xff09;。 具体示例如下&#xff1a; 题解 本题是一个在思维上的方法&#xff0c;不…

Ant Design Pro 框架设置API Token拦截器的功能

分享记录一个解决方法&#xff0c;希望对大家有帮助。 找到文件&#xff0c;然后定义一个方法。最后调用一下即可。 代码我也给你贴上了。 // 获取token 拦截方法 const setTokenRequest (config: any) > {const token 30|eh5GNXWRe5rO4XLjbbnqy132RABfiKqI338EoIhqc790a…

sourceTree的下载和安装

sourceTree的下载和安装 一、概述 SourceTree 是一款免费的 Git 和 Hg 客户端管理工具&#xff0c;支持 Git 项目的创建、克隆、提交、push、pull 和合并等操作。它拥有一个精美简洁的界面&#xff0c;大大简化了开发者与代码库之间的 Git 操作方式&#xff0c;这对于不熟悉 …

java学习part32StringBuffer和StringBuilder

Java中的值传递和引用传递&#xff08;详解&#xff09; - 知乎 (zhihu.com) 146-常用类与基础API-StringBuffer与StringBuilder的源码分析、常用方法_哔哩哔哩_bilibili 1. 2.扩容机制 不够用&#xff1a;长度为 原长度*22&#xff1b;如果还不够&#xff0c;那么就扩容到目…

STM32踩坑--串口发送乱码

一、发现问题 今天在STM32F407新板子上测试串口时&#xff0c;发现发送数据一直乱码。 二、解决问题 针对STM32F407系列校准PLLCLK时钟&#xff1a; ①由 时钟树 可以看出PLLCLKHSE&#xff08;高速外部时钟&#xff09;*N/(M*P)。因为SYSTICK一般取最高的时钟168M&#xff…

【Linux】第二十五站:深入理解文件系统

文章目录 一、前言二、认识硬件----磁盘1.基本介绍2.磁盘的存储构成3.磁盘的逻辑结构4.回归到硬件 三、文件系统1.划分2.Block group(1)Data blocks(2)inode Table(3)Block Bitmap(4)inode Bitmap(5)Group Descriptor Table(GDT)(6)Super Block 3.总结4.一些其他问题5.如何理解…

C语言--求一个十进制整数中1的个数

一.题目描述⭐ 求一个十进制整数中1的个数 比如&#xff1a; 输入:10201 输出&#xff1a;2 &#xff08;这个数字中1的个数是2&#xff09; 二.思路分析⭐ 数字类的问题我们可以用取模&#xff0c;或者取余运算。 首先定义一个计数器&#xff0c;用来统计1的个数。 输入数字…

《管家婆》辉煌2005+(V4.0)简单教程

《管家婆》辉煌2005&#xff08;V4.0&#xff09;简单教程 呉師傅 运行环境&#xff1a;   操作系统推荐使用Win2000&#xff08;32位&#xff09;、WinXP&#xff08;32位&#xff09;、Win7&#xff08;位&#xff09; 兼容&#xff1a;Win7&#xff08;64位&#xff09…

【毕业设计】基于雷达与深度学习的摔倒检测——微多普勒效应

运动物体的微多普勒效应为人体动作识别提供了可能&#xff0c;基于雷达的居家检测具有良好的隐私保护性&#xff0c;且不易受环境因素影响&#xff08;如光照、温度等&#xff09;&#xff0c;近年来已受到国内外学者的广泛关注。由于雷达信号的非平稳特性&#xff0c;通过短时…