数据结构:图文详解双向链表的各种操作(头插法,尾插法,任意位置插入,查询节点,删除节点,求链表的长度... ...)


目录

一.双向链表的概念

二.双向链表的数据结构

三.双向链表的实现

节点的插入

头插法

尾插法

任意位置插入

节点的删除

删除链表中第一次出现的目标节点

删除链表中所有与关键字相同的节点

节点的查找

链表的清空

链表的长度

四.模拟实现链表的完整代码


前言:在上一篇文章中,我们认识了链表中的单链表,而本篇文章则是介绍线链表中的另一个结构双向链表,有兴趣的朋友们可以点击了解:图文详解单链表的各种操作

一.双向链表的概念

双向链表(Doubly Linked List)是一种数据结构,它与单向链表相似,但每个节点不仅包含指向下一个节点的指针,还包含指向上一个节点的指针。

双向链表的每个节点通常包含以下两个指针:

  • prev:指向上一个节点
  • next:指向下一个节点

通过这两个指针,可以在双向链表中沿着两个方向遍历。

相比于单向链表,双向链表能够更方便地进行插入和删除操作。因为每个节点包含指向前一个节点的指针,所以在删除或插入一个节点时,只需要修改该节点前后节点的指针即可。而在单向链表中,则需要在删除或插入节点时,找到该节点的前一个节点,以便进行指针修改,显得相对麻烦。


二.双向链表的数据结构

双向俩表有俩个指针,分别存放前驱节点的地址和后继节点的地址,如图所示

对于其中每一个节点,我们可以如下存储

    public class Node{
        public int data;
        public Node prev;
        public Node next;
        //构造方法,给每个节点赋值
        public Node(int data) {
            this.data = data;
        }
    }

而我们的链表则是需要将所有的节点封装起来,放进一个数据结构中,因此将刚才定义的节点类作为链表的内部类即可,而链表又需要实现各种各样的功能,我们可以将所有的链表的功能抽象出一个接口,然后通过链表去具体的实现那些功能

public class MyLinkList implements Ilst{
    //节点的数据结构
    public class Node{
        public int data;
        public Node prev;
        public Node next;
        //构造方法
        public Node(int data) {
            this.data = data;
        }
    }
    public Node head;//头节点
    public Node last;//尾节点
}

接口:

public interface Ilst {
    //头插法
    public void addFirst(int data);
    //尾插法
    public void addLast(int data);
    //任意位置插入
    public void addIndex(int index,int data);
    //查找是否包含关键字key是否在链表当中
    public boolean contains(int key);
    //删除第一次出现关键字为key的节点
    public void remove(int key);
    //删除所有值为key的节点
    public void removeAllKey(int key);
    //得到链表的长度
    public int size();
    //展示链表
    public void display();
    //清空链表
    public void clear();
}

三.双向链表的实现

节点的插入

节点的插入分为三种情况,一是在链表最前面进行插入也就是头插法,二是在链表末尾进行插入,也就是尾插法,三是在链表中间位置插入

头插法

如图所示有一个新的节点,我们需要将其插入头节点的位置

第一步:将目标节点后继指针指向头节点位置的节点

第二步,将头节点前驱指针指向目标节点

在使用代码具体实现的时候,需要对异常做出判断,假如头节点为空,也就是链表里面没有节点的时候,我们就直接让我们要新加的节点既是头节点,又是尾节点;在做出异常处理后,我们就可以按照刚才图示的过程进行头插了,但是需要注意的是,在完成头插后需要更新头节点的位置 

    @Override//头插法
    public void addFirst(int data) {
        Node newNode = new Node(data);
        if (head == null){
            head = newNode;
            last = newNode;
        }else {
            newNode.next = head;
            head.prev = newNode;
            //更新头节点
            head = newNode;
        }
    }

尾插法

如图所示有一个新的节点,我们需要将其插入链表的末尾

第一步:将目标节点前驱指针指向尾部节点

第二步:将尾部节点后继指针指向目标节点

在使用代码具体实现的时候,需要对异常做出判断,假如头节点为空,也就是链表里面没有节点的时候,我们就直接让我们要新加的节点既是头节点,又是尾节点;在做出异常处理后,我们就可以按照刚才图示的过程进行尾插了,但是需要注意的是,在完成头插后需要更新尾部节点的位置

    @Override//尾插法
    public void addLast(int data) {
        Node newNode =  new Node(data);
        if (head == null){
            head = newNode;
            last = newNode;
        }else {
            newNode.prev = last;
            last.next = newNode;
            //更新尾部节点
            last = newNode;
        }
    }

任意位置插入

如图,假如想让新节点插入第三个节点的位置,该如何做呢?

第一步:先将目标节点后继指针指向要插入节点后一个节点

 

第二步:将目标节点前驱指针指向插入节点 

 

第三步:将插入节点后继指针指向目标节点

第四步:将插入节点的后一个节点前驱指针指向目标节点 

对于节点的插入,最难的一点便是这4个步骤的顺序,顺序不是一成不变也不必死背,只需要记住一个原则——保证链表不断,在这个原则的基础上进行操作就不会出现问题了,也就是说在我们插入的时候,不要因为先去处理前面的节点导致找不到后面的节点就可以,因此我们在对链表进行插入操作的时候,一般都习惯先对后面的节点进行操作。

对于输入的位置我们要进行合法性的判断,如果在最前面就刚好使用头插法,如果是最后面就使用尾插法,之后遍历找到我们要插入的位置

    @Override//任意位置插入
    public void addIndex(int index, int data) {
        //对输入位置进行判断
        if (index < 0 || index > size()) {
            System.out.println("输入位置不合法");
            return;
        }
        if (index == 0) {
            //如果插入位置在最前面就使用头插
            addFirst(data);
            return;
        }
        if (index == size()) {//这里的size方法在后文中有定义
            //如果插入位置在最后面就使用尾插
            addLast(data);
            return;
        }
        //在中间插入
        Node newNode = new Node(data);
        //找到要插入的位置
        Node cur = head;
        while (index != 1) {
            cur = cur.next;
            index--;
        }
        //将新节点插入到cur之前
        newNode.next = cur;
        newNode.prev = cur.prev;
        cur.prev.next = newNode;
        cur.prev = newNode;
//        //将新节点插入到cur之后
//        newNode.next = cur.next;
//        newNode.prev = cur;
//        cur.next = newNode;
//        newNode.next.prev = newNode;
    
    }

节点的删除

对于节点的删除我们分为俩种,一种的将单个节点进行删除,一种是将所有与目标值相同的节点进行删除

删除链表中第一次出现的目标节点

如图,我们假定我们要删除链表中第三个节点

第一步:将删除节点的前驱节点后继指针指向删除节点的后继节点 

第二步:将删除节点的后继节点前驱指针指向删除节点的前驱节点

对于上面俩个过程只是俩行代码就可以解决:

cur.next.prev = cur.prev;
cur.prev.next = cur.next;

删除的过程非常简单,但是要找到正确的位置并不是一件容易事,就算找到后也要进行合法性的判断,具体代码如下:

    @Override//删除第一次出现关键字为key的节点
    public void remove(int key) {
        Node cur = head;
        while (cur != null) {
            if(cur.data == key) {
                if(cur == head) {
                    head = head.next;
                    if(head != null) {
                        head.prev = null;
                    }else {
                        //只有一个节点 且是需要删除的节点
                        last = null;
                    }
                }else {
                    if(cur.next != null) {
                        //删除中间节点
                        cur.next.prev = cur.prev;
                        cur.prev.next = cur.next;
                    }else {
                        //删除尾巴节点
                        cur.prev.next = cur.next;
                        last = last.prev;
                    }
                }
                return;
            }
            cur = cur.next;
        }
    }

删除链表中所有与关键字相同的节点

对于和刚才唯一不同的点就是我们在删除一个点后不需要停止返回,继续遍历整个链表进行删除即可,这里就不再赘述

    @Override//删除所有值为key的节点
    public void removeAllKey(int key) {
        Node cur = head;
        while (cur != null) {
            if(cur.data == key) {
                if(cur == head) {
                    head = head.next;
                    if(head != null) {
                        head.prev = null;
                    }else {
                        //只有一个节点 且是需要删除的节点
                        last = null;
                    }
                }else {
                    if(cur.next != null) {
                        //删除中间节点
                        cur.next.prev = cur.prev;
                        cur.prev.next = cur.next;
                    }else {
                        //删除尾巴节点
                        cur.prev.next = cur.next;
                        last = last.prev;
                    }
                }
            }
            cur = cur.next;
        }
    }

节点的查找

对于节点的查找,只需要挨个遍历判断就可以

    @Override//查找是否包含关键字key是否在链表当中
    public boolean contains(int key) {
        Node cur = head;
        while (cur != null){
            if (cur.data == key){
                return true;
            }else {
                cur = cur.next;
            }
        }
        return false;
    }

链表的清空

清空链表需要对每个节点进行清空,因此我们遍历整个链表然后进行赋值为空就可以,但是有一点需要注意,我们在删除每一个节点的后继指针之前得先做临时的记录,不然我们删除了一个节点的后继指针后就无法通过它访问后一个节点了

    @Override//清空链表
    public void clear() {
        Node cur = head;
        while (cur != null){
            Node tempNode = cur.next;//记录当前节点的下一个节点的地址
            cur.prev = null;
            cur.next = null;
            cur = tempNode;
        }
        this.head = null;
        this.last = null;
    }

链表的长度

求链表的长度只需要使用计数器遍历累加就可以

    @Override//得到单链表的长度
    public int size() {
        int count = 0;
        Node cur = head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }

四.模拟实现链表的完整代码

package MyLinkList;

public class MyLinkList implements Ilst {
    
    public class Node {
        public int data;
        public Node prev;
        public Node next;
        
        //构造方法
        public Node(int data) {
            this.data = data;
        }
    }
    
    public Node head;
    public Node last;
    
    @Override//头插法
    public void addFirst(int data) {
        Node newNode = new Node(data);
        if (head == null) {
            head = newNode;
            last = newNode;
        } else {
            newNode.next = head;
            head.prev = newNode;
            //更新头节点
            head = newNode;
        }
    }
    
    @Override//尾插法
    public void addLast(int data) {
        Node newNode = new Node(data);
        if (head == null) {
            head = newNode;
            last = newNode;
        } else {
            newNode.prev = last;
            last.next = newNode;
            //更新尾部节点
            last = newNode;
        }
    }
    
    @Override//任意位置插入
    public void addIndex(int index, int data) {
        //对输入位置进行判断
        if (index < 0 || index > size()) {
            System.out.println("输入位置不合法");
            return;
        }
        if (index == 0) {
            //如果插入位置在最前面就使用头插
            addFirst(data);
            return;
        }
        if (index == size()) {
            //如果插入位置在最后面就使用尾插
            addLast(data);
            return;
        }
        //在中间插入
        Node newNode = new Node(data);
        //找到要插入的位置
        Node cur = head;
        while (index != 1) {
            cur = cur.next;
            index--;
        }
        //将新节点插入到cur之前
        newNode.next = cur;
        newNode.prev = cur.prev;
        cur.prev.next = newNode;
        cur.prev = newNode;
//        //将新节点插入到cur之后
//        newNode.next = cur.next;
//        newNode.prev = cur;
//        cur.next = newNode;
//        newNode.next.prev = newNode;
    
    }
    
    @Override//查找是否包含关键字key是否在链表当中
    public boolean contains(int key) {
        Node cur = head;
        while (cur != null){
            if (cur.data == key){
                return true;
            }else {
                cur = cur.next;
            }
        }
        return false;
    }
    
    @Override//删除第一次出现关键字为key的节点
    public void remove(int key) {
        Node cur = head;
        while (cur != null) {
            if(cur.data == key) {
                if(cur == head) {
                    head = head.next;
                    if(head != null) {
                        head.prev = null;
                    }else {
                        //只有一个节点 且是需要删除的节点
                        last = null;
                    }
                }else {
                    if(cur.next != null) {
                        //删除中间节点
                        cur.next.prev = cur.prev;
                        cur.prev.next = cur.next;
                    }else {
                        //删除尾巴节点
                        cur.prev.next = cur.next;
                        last = last.prev;
                    }
                }
                return;
            }
            cur = cur.next;
        }
    }
    
    @Override//删除所有值为key的节点
    public void removeAllKey(int key) {
        Node cur = head;
        while (cur != null) {
            if(cur.data == key) {
                if(cur == head) {
                    head = head.next;
                    if(head != null) {
                        head.prev = null;
                    }else {
                        //只有一个节点 且是需要删除的节点
                        last = null;
                    }
                }else {
                    if(cur.next != null) {
                        //删除中间节点
                        cur.next.prev = cur.prev;
                        cur.prev.next = cur.next;
                    }else {
                        //删除尾巴节点
                        cur.prev.next = cur.next;
                        last = last.prev;
                    }
                }
            }
            cur = cur.next;
        }
    }
    
    @Override//得到单链表的长度
    public int size() {
        int count = 0;
        Node cur = head;
        while (cur != null) {
            count++;
            cur = cur.next;
        }
        return count;
    }
    
    @Override//展示链表
    public void display() {
        Node cur = head;
        while (cur != null) {
            System.out.print(cur.data + " ");
            cur = cur.next;
        }
        System.out.println();
    }
    
    @Override//清空链表
    public void clear() {
        Node cur = head;
        while (cur != null){
            Node tempNode = cur.next;
            cur.prev = null;
            cur.next = null;
            cur = tempNode;
        }
        this.head = null;
        this.last = null;
    }
}



  本次的分享就到此为止了,希望我的分享能给您带来帮助,也欢迎大家三连支持,你们的点赞就是博主更新最大的动力!如有不同意见,欢迎评论区积极讨论交流,让我们一起学习进步!有相关问题也可以私信博主,评论区和私信都会认真查看的,我们下次再见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/213255.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

初探Java之旅:探寻Java的奥秘

✨个人主页&#xff1a;全栈程序猿的CSDN博客 &#x1f4a8;系列专栏&#xff1a;Java从入门到精通 ✌座右铭&#xff1a;编码如诗&#xff0c;Bug似流星&#xff0c;持续追求优雅的代码&#xff0c;解决问题如同星辰般自如 在计算机编程的世界中&#xff0c;有一门被誉为“千变…

位图布隆过滤器(附面试题)

文章目录 目录 文章目录 前言 一 . 位图 1.1 面试题 1.2 位图概念 1.3 位图的实现 1.4 位图的应用 二 . 布隆过滤器 2.1 布隆过滤器提出 2.2布隆过滤器概念 2.3 布隆过滤器的查找 2.4 实现 2.5 布隆过滤器删除 2.6 布隆过滤器优点 2.7 布隆过滤器缺陷 2.8 布隆过滤器使用场景 三…

面试官:说说Vue中Proxy与Object.defineProperty的用法与区别

前言 面试时&#xff0c;我们说完Vue响应式原理&#xff0c;或者Vue2和Vue3的区别时&#xff0c;通常会引出Vue3使用了Proxy来优化响应式&#xff0c;而面试官会继续深挖&#xff1a;说说Proxy与Object.defineProperty的区别。 我们不能只说Proxy直接代理一个对象&#xff0c…

【java毕业设计源码】基于SSM框架的在线智能题库管理系统设计与实现

该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等学习内容。 目录 一、项目介绍&#xff1a; 二、文档学习资料&#xff1a; 三、模块截图&#xff1a; 四、开发技术与运行环境&#xff1a; 五、代码展示&#xff1a; 六、数据库表截图&#xff1a…

【论文阅读 + 核心代码定位解读】(2023 AAAI)HiCLR

Hierarchical Consistent Contrastive Learning for Skeleton-Based Action Recognition with Growing Augmentations Contribution 直接使用 strong augmentations 会导致图片/骨架点序列的结构变形和语义信息损失&#xff0c;从而导致训练过程的不稳定。于是本文提出了一种逐…

Java Servlet

请求 请求行 方式 uri http/1.1 请求头 请求体 form表单标签提交Get请求时&#xff0c;参数以键值对形式放在url后&#xff0c;不放在请求体里&#xff0c;Get方式的请求也是可以有请求体的 Post请求时&#xff0c;放在请求头里面 Servlet (server applet) 是运行在服务端…

curl --compressed报错,此版本不支持此命令

出现这个问题是因为微软windows自带的curl不支持这个选项,验证如下 执行where curl 时,可以看到输出为 C:\Windows\System32\curl.ee 解决方法是使用其它curl,下载地址如下 curl for Windows https://curl.se/windows/ 然后把安装目录的bin目录放到path环境变量里最开始, 让…

基于微信小程序的高校活动系统

1 前言 1.1开发背景及意义 高校课余活动管理是中职学生素质教育的重要途径及有效方式&#xff0c;特别是对于一个院校的校园文化建设、校风学风建设和学生综合素质方面的提高至关重要t叫"。良好的学生活动组织可以更好地调动学生参与活动&#xff0c;让学生展示自己的能力…

理解SpringIOC和DI第一课(Spring的特点),IOC对应五大注解,ApplicationContext vs BeanFactory

Spring是一个包含众多工具等Ioc容器 对象这个词在Spring范围内&#xff0c;称为bean Spring两大核心思想 1.IOC (IOC是控制反转&#xff0c;意思是控制权反转-控制权&#xff08;正常是谁用这个对象&#xff0c;谁去创建&#xff0c;&#xff09;-控制对象的控制权&#xf…

十五届海峡两岸电视主持新秀大会竞赛流程

海峡两岸电视主持新秀会是两岸电视媒体共同举办的一项活动&#xff0c;旨在为两岸年轻的电视主持人提供一个展示才华的舞台&#xff0c;促进两岸文化交流和青年交流。本届新秀会是第十二届海峡两岸电视艺术节的重要活动之一。本次竞赛赛制流程如下&#xff1a; &#xff08;1&…

navicat某些表为什么不按主键排序

不知道大家注没注意过navicat的这种情况 为什么不是按主键排序呢 我们来全表扫描看下他的执行计划 explain select * from orsql3; 可以发现不是全表扫描而是索引树扫描&#xff0c;由此得知了共性&#xff0c;不按主键顺序排序的表&#xff0c;肯定是在二级索引上就保存着全部…

【uni-app】赋予你的APP(Android原生)小程序开发能力

采用DCloud(数字天堂&#xff08;北京&#xff09;网络技术有限公司)的uniMPsdk(uni小程序SDK)&#xff0c;是为原生App打造的可运行基于 uni-app 开发的小程序前端项目的框架&#xff0c;从而帮助原生App快速获取小程序的能力。 uni-app文档地址(小程序开发人员开发用) uniMP…

SmartsoftHelp8,条形码,二维码 生成,解析 专业工具

生成条形码 生成二维码 条形码解析 二维码解析 专业工具 下载地址&#xff1a; https://pan.baidu.com/s/1zBgeYsqWnSlNgiKPR2lUYg?pwd8888

9、Qt使用随机验证码

一、新建项目 创建一个"Qt Widget Application"项目&#xff0c;基类选择“QMainWindow” 二、自定义CaptchaLabel类 右击项目名&#xff0c;选择"Add New...” C -> CClass&#xff0c;点击“Choose” 更改类名CaptchaLabel&#xff0c;添加基类QLabel&a…

《YOLOv8原创自研》专栏介绍 CSDN独家改进创新实战专栏目录

YOLOv8原创自研 https://blog.csdn.net/m0_63774211/category_12511737.html?spm1001.2014.3001.5482 &#x1f4a1;&#x1f4a1;&#x1f4a1;全网独家首发创新&#xff08;原创&#xff09;&#xff0c;适合paper &#xff01;&#xff01;&#xff01; &#x1f4a1;&a…

分治-归并排序

文章目录 &#x1f31e;315. 计算右侧小于当前元素的个数&#x1f308;1. 题目⛅2. 算法原理&#x1fa90;3. 代码实现 &#x1f315;493. 翻转对&#x1f320;1. 题目⭐2. 算法原理&#x1f31f;3. 代码实现 &#x1f31e;315. 计算右侧小于当前元素的个数 &#x1f308;1. 题…

Matlab数学建模详解之发电机的最佳调度实现

&#x1f517; 运行环境&#xff1a;Matlab、Python &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 #### 防伪水印——左手の明天 #### &#x1f497; 大家好&#x1f917;&am…

String类 ---java

目录 一. 常用的字符串的构造 二. 字符串的源代码 三. 字符串比较 1. 是不能比较字符串的值的 ​编辑 2.比较两个字符串 --- compareTo() 3. 忽略大小写比较 ---compareToIgnoreCase() 四. 字符串转化 1. 数字转字符串 valueOf() 2. 字符串转数字 3. 小写转大写 to…

树莓派多串口通信

树莓派多串口通信 串口配置串口通信函数分析串口通信示例代码 参考博文1&#xff1a;树莓派 4 UART 多串口配置通信参考博文2&#xff1a;树莓派wiringPi库详解关于树莓派相关其他环境配置可参考&#xff1a;快速上手树莓派关于wiringPi库初始化与IO口开发可参考&#xff1a;树…

OpenLayer库的学习入门总结

前言&#xff1a; 作者跟随视频学习ol库的调用与功能实现&#xff0c;进行初步总结与回顾。 声明&#xff1a;参考新中地的文档&#xff0c;进行作者日后复习再次学习的简化。 1、WebGIS简介 GIS的核心概念 GIS&#xff08;Geographic Information System&#xff09;是一…