【机器学习】简单认识监督学习

简单认识监督学习

  • ⭐️Supervised learning
  • ⭐️Examples
  • ⭐️Specific example
  • ⭐️两种类型的监督学习算法
    • 🌙回归算法
    • 🌙分类算法
  • ⭐️总结

Hi~大家好呀!经历了暑假期间短暂的接触机器学习的一些算法,之后又对深度学习、yolo系列有些了解,还尝试着去学习完成one-stage目标检测,但是由于基础知识的不扎实,很多时候都在补窟窿。
所以我打算从0开始学习机器学习算法,根据吴恩达老师的完整课程,将学习笔记上传于此。

“我认为今天机器学习创造的价值的99%是通过一种机器学习称为监督学习完成的。”

⭐️Supervised learning

监督机器学习是指学习x到y或者 输入到输出映射的算法。

监督学习的关键特征是,我们自己提供学习算法示例以供学习。
这其实就是,给定输入x的正确标签y,机器通过查看正确输入x所需的标签y,最终学会学习算法。即,当我们只是给出输入x,机器就能够给出合理准确的预测或者猜想

⭐️Examples

  • input 电子邮件
  • output 垃圾邮件/非垃圾邮件
    通过监督学习,将为我们提供垃圾邮件过滤器的功能。
  • input 音频
  • output 文本转录本
    这时,监督学习,就为我们提供语音识别的功能。
  • input English
  • output 其他语言
    这时,就实现了机器翻译

或者,我们可以将图片作为输入,比如说,刚下线的手机,将其图片作为输入,让学习算法根据输入的手机产品的 图片来判断是否存在划痕、凹痕或者其他缺陷。
这个称为目视检查,它可以帮助制造商减少或者防止其产品中的缺陷。

在上面的这些例子中,我们首先需要输入大量的示例,即输入x和与其相对应的正确答案即标签y来训练我们的模型

在模型从这些输入、输出(x和相对应的y)中学习之后,它们可以采用全新的输入x(它以前从未见过的东西),并尝试产生适当的对应输出y

⭐️Specific example

下面让我们更深入地研究一个具体的示例。
房价预测问题。
假如我们想根据房屋地大小来预测房价,并且我们已经收集到了一些过去的数据,并绘制了数据。

这里的横轴是以平方英尺为单位的房屋大小,纵轴是房子的价格。
有了这些数据,假如你的一位朋友想直到他们750平方英尺的房子的价格是多少。那通过学习算法如何帮助到你的朋友呢?
学习算法可能会通过指向拟合数据,通过直线上的数据以及直线以外的读数,可以大概预测到房子大概可以卖到150,000美元。

但拟合直线并不是我们可以使用的唯一学习算法。还有更好的可以应用于此。
比如,我们用下面的曲线进行拟合:

这样看起来,你的朋友的房子可以接近于200,000美元的价格。
给你的朋友选择最好的价格出售并不合适,我们应该关注的一件事是,如何选择最合适的直线或者曲线来适应这个数据,给出最合适的数据。

以这个例子简单说明,我们首先为算法提供了一个数据集,这个数据集中的每个x即房屋的面积,都对应着一个正确答案,即标签y。
学习算法的任务就是通过对此数据集的学习,有一些“经验”,产生更多这样的正确答案,当我们利用这个算法时,为这个算法提供一个房屋的面积,它可以根据“以往经验”预测出可能的出售价格。

⭐️两种类型的监督学习算法

🌙回归算法

在上面我们看到的预测房价问题中,其就是和回归算法。它学习从无限多的数字中预测数字。它可能是150,000到300,000中的任意数字。
其实本质闪也就是说,我们需要预测的标签y是连续的。

🌙分类算法

下面我们以乳腺癌检测为例,来研究分类算法。 假设我们要构建一个机器学习系统,以便医生可以使用诊断工具来检测乳腺癌。
我们根据患者的医疗记录,根据患者的肿瘤/肿块来判断乳腺癌是恶性的还是非恶性的。

然后我们收集一些数据,这些数据根据肿瘤的大小,将数据分为良性或者恶性。
比如说,下面,为了方便研究,我们将良性标注为0,恶性标注为1。

然后,我们将数据绘制在图表中,横轴代表肿瘤块的大小,纵轴仅仅取两个值,0和1,这是因为我们仅仅需要预测少量可能的输出或者类别。在这个例子中,仅仅有两个可能的输出,良性或者恶性,即0或1
在这里插入图片描述

这就是分类与回归的区别,分类算法就是仅仅需要预测可数个类别,而回归算法的预测,所可能的数字无限多。
因此,只有两种可能的输出这一事实构成了这种分类

我们可以使用两个符号进行更形象化表示,比如良性我们使用圆圈表示,恶性我们使用十字表示。

在上面我们的数据集只有一个输入,即患者肿瘤块的大小。为了更精确的预测,我们将我们的数据集的输入新增至两个,即肿瘤块的大小和患者的年龄。

所以这时医生就可以根据患者的肿瘤块的大小以及患者年龄,进行预测。

也就是,学习算法可能会做的就是找到一些将恶性肿瘤与良性肿瘤分开的边界。

也就是说,学习算法必须决定如何根据现有的数据集来拟合边界线。

⭐️总结

监督学习算法其实就是x到y的一种映射,也可以说是输入到输出的一种映射。
监督学习算法主要分为两类,回归算法和分类算法。
回归算法其实就是预测坐标轴的可能区间的无限个数。而分类算法预测结果就是坐标轴上的点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/212311.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PID控制

在PID控制中,输出通常是一个控制量,而不是直接的PWM占空比。输出的具体含义可以根据具体的系统和应用而变化。在这段代码中,PID控制器的输出是 output_calc。 而 CCR_duty 是控制施肥系统的PWM占空比,这是通过PID控制的输出和曲线…

T-SQL语句管理表

SQL Server对数据库的操作有两种方式,即可视化操作界面和SQL语言。 SQL Server的操作也可以使用T-SOL语句完成,这也是实际生产环境中数据库管理员最常使用的管理数据库的方法。 T-SQL:SQL的加强版,提供了类似于程序语言的基本功…

谈谈MYSQL索引

基本介绍 索引是帮助MySQL高效获取数据的数据结构,主要是用来提高数据检索的效率,降低数据库的IO成本,同时通过索引列对数据进行排序,降低数据排序的成本,也能降低了CPU的消耗。 通俗来说, 索引就相当于一本书的目录,…

盘点25个Html游戏Game源码网页爱好者不容错过

盘点25个Html游戏Game源码网页爱好者不容错过 学习知识费力气,收集整理更不易。 知识付费甚欢喜,为咱码农谋福利。 下载链接:https://pan.baidu.com/s/1lSNLjWB4xMuLV8m_kDtczw?pwd6666 提取码:6666 项目名称 21点游戏 H5…

SpringBoot整合Kafka

SpringBoot整合Kafka 文章目录 SpringBoot整合Kafka下载与安装创建topic,测试生产消费程序SpringBoot整合Kafka导坐标做配置做客户端 下载与安装 下载地址: https://kafka.apache.org/downloads 下载2的版本,3.的版本会报错 解压安装&#x…

【大学英语视听说上】“智力”口语问答练习

题目: book 2, page 9, question 4 回答: 1: What do you think of the view “Intelligence must be bred, not trained”? I think this view is biased. The view suggests that intelligence is primarily determined by genetic factors and inh…

【大数据】HBase 中的列和列族

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 &#x…

类和对象(上篇)

类和对象 面向过程和面向对象的区别:结构体变为类类的一些性质类的访问限定符类的实体化类对象的大小this指针 面向过程和面向对象的区别: C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决…

第8关:定义一个名为PROC_AVGWEIGHT的有参数存储过程

USE mydata; #请在此处添加实现代码 ########## Begin ########## DELIMITER $ CREATE PROCEDURE PROC_AVGWEIGHT(IN SNO VARCHAR(10), IN JNO VARCHAR(10), OUT AVG_WEIGHT INT) BEGINSELECT ROUND(SUM(P.WEIGHT * SPJ.QTY) / SUM(SPJ.QTY)) INTO AVG_WEIGHTFROM PJOIN SPJ ON…

16.字符串处理函数——字符串长度函数

文章目录 前言一、题目描述 二、解题 程序运行代码 总结 前言 本系列为字符串处理函数编程题&#xff0c;点滴成长&#xff0c;一起逆袭。 一、题目描述 二、解题 程序运行代码 #include<stdio.h> #include<string.h> int main() {char str[ ]"0123\0456…

rank的相关loss

1、相关loss 1.1、loss相关简介 排序优化时&#xff0c;主要从三个角度来考虑构建loss&#xff0c;分别为pointwise、pairwise、listwise。pointwise将排序所有query当成一个整体&#xff0c;计算每个<query,doc>对的loss,相当于一个二分问题。pairwise以每个query为维…

Sailfish OS 移动操作系统

Jolla 是一家曾经致力于开发智能手机和平板电脑的公司&#xff0c;但是这些产品并没有取得成功。后来 Jolla 将重心转向了基于 Linux 的 Sailfish OS&#xff08;旗鱼&#xff09;&#xff0c;并将其应用于现有设备上。Sailfish OS 是由 Jolla 在 MeeGo 基础上开发的移动操作系…

开源播放器GSYVideoPlayer + ViewPager2 源码解析

开源播放器GSYVideoPlayer ViewPager2 源码解析 前言一、GSYVideoPlayer&#x1f525;&#x1f525;&#x1f525;是什么&#xff1f;二、源码解析1.ViewPager2Activity 总结 前言 本文介绍GSYVideoPlayer源码中关于ViewPager2 GSYVideoPlayer 实现的滑动播放列表的实现原理。…

【PTA题目】7-18 6翻了 分数 15

7-18 6翻了 分数 15 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 “666”是一种网络用语&#xff0c;大概是表示某人很厉害、我们很佩服的意思。最近又衍生出另一个数字“9”&#xff0c;意思是“6翻了”&#xff0c;实在太厉害的意思。如果你以为这就是厉害的最高境界&…

合成相机模型【图形学】

相机在计算机图形学中有两个方面的考虑&#xff1a;相机的位置和相机的形状。 要了解后者&#xff0c;我们需要了解相机的工作原理。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - R…

聊聊测试for Jeffky

什么是测试 测试是一个系统性的过程&#xff0c;它涉及到在已开发的软件中执行程序、应用工具和技术来评估其质量、功能和性能。这个过程的目的是发现并纠正程序中的错误&#xff0c;提高软件的可靠性和稳定性&#xff0c;以满足用户的需求。 测试的分类 什么是自动化测试 自动…

MySQL 教程 1.5

MySQL 创建数据表 创建 MySQL 数据表需要以下信息&#xff1a; 表名表字段名定义每个表字段的数据类型 语法 以下为创建 MySQL 数据表的 SQL 通用语法&#xff1a; CREATE TABLE table_name (column1 datatype,column2 datatype,... ); table_name 是你要创建的表的名称。…

多表查询与子查询

问题的引出&#xff1a; 这里有一个留言板&#xff0c;其中一条评论包含了商品名称good&#xff08;商品表&#xff09;&#xff0c;留言content(留言表)。 那么请问如将这个评论从数据库查询出来&#xff1f;这就涉及到了多表查询。 多表查询是指基于两个和两个以上的表查询.…

idea通过remote远程调试云服务器

引用了第三方的包&#xff0c;调试是看不到运行流程&#xff0c;于是想到了idea的remote方法 -agentlib:jdwptransportdt_socket,servery,suspendn,address9002 写一个.sh文件并启动 nohup java -jar -agentlib:jdwptransportdt_socket,servery,suspendn,address9002 ./demo.j…

论文解读--Robust lane detection and tracking with Ransac and Kalman filter

使用随机采样一致性和卡尔曼滤波的鲁棒的车道线跟踪 摘要 在之前的一篇论文中&#xff0c;我们描述了一种使用霍夫变换和迭代匹配滤波器的简单的车道检测方法[1]。本文扩展了这项工作&#xff0c;通过结合逆透视映射来创建道路的鸟瞰视图&#xff0c;应用随机样本共识来帮助消…