神经网络 模型表示(一)

神经网络 模型表示

模型表示一

为了构建神经网络模型,我们需要首先思考大脑中的神经网络是怎样的?每一个神经元都可以被认为是一个处理单元/神经核(processing unit/Nucleus),它含有许多输入/树突(input/Dendrite),并且有一个输出/轴突(output/Axon)。神经网络是大量神经元相互链接并通过电脉冲来交流的一个网络。

在这里插入图片描述

下面是一组神经元的示意图,神经元利用微弱的电流进行沟通。这些弱电流也称作动作电位,其实就是一些微弱的电流。所以如果神经元想要传递一个消息,它就会就通过它的轴突,发送一段微弱电流给其他神经元,这就是轴突。

这里是一条连接到输入神经,或者连接另一个神经元树突的神经,接下来这个神经元接收这条消息,做一些计算,它有可能会反过来将在轴突上的自己的消息传给其他神经元。这就是所有人类思考的模型:我们的神经元把自己的收到的消息进行计算,并向其他神经元传递消息。这也是我们的感觉和肌肉运转的原理。如果你想活动一块肌肉,就会触发一个神经元给你的肌肉发送脉冲,并引起你的肌肉收缩。如果一些感官:比如说眼睛想要给大脑传递一个消息,那么它就像这样发送电脉冲给大脑的。

神经网络模型建立在很多神经元之上,每一个神经元又是一个个学习模型。这些神经元(也叫激活单元,activation unit)采纳一些特征作为输出,并且根据本身的模型提供一个输出。下图是一个以逻辑回归模型作为自身学习模型的神经元示例,在神经网络中,参数又可被成为权重(weight)。

在这里插入图片描述

我们设计出了类似于神经元的神经网络,效果如下:

其中 x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3是输入单元(input units),我们将原始数据输入给它们。
a 1 a_1 a1, a 2 a_2 a2, a 3 a_3 a3是中间单元,它们负责将数据进行处理,然后呈递到下一层。
最后是输出单元,它负责计算 h θ ( x ) {h_\theta}\left( x \right) hθ(x)

神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。下图为一个3层的神经网络,第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer),中间一层成为隐藏层(Hidden Layers)。我们为每一层都增加一个偏差单位(bias unit

下面引入一些标记法来帮助描述模型:
a i ( j ) a_{i}^{\left( j \right)} ai(j) 代表第 j j j 层的第 i i i 个激活单元。 θ ( j ) {{\theta }^{\left( j \right)}} θ(j)代表从第 j j j 层映射到第$ j+1$ 层时的权重的矩阵,例如 θ ( 1 ) {{\theta }^{\left( 1 \right)}} θ(1)代表从第一层映射到第二层的权重的矩阵。其尺寸为:以第 j + 1 j+1 j+1层的激活单元数量为行数,以第 j j j 层的激活单元数加一为列数的矩阵。例如:上图所示的神经网络中 θ ( 1 ) {{\theta }^{\left( 1 \right)}} θ(1)的尺寸为 3*4。
在这里插入图片描述

对于上图所示的模型,激活单元和输出分别表达为:

a 1 ( 2 ) = g ( Θ 10 ( 1 ) x 0 + Θ 11 ( 1 ) x 1 + Θ 12 ( 1 ) x 2 + Θ 13 ( 1 ) x 3 ) a_{1}^{(2)}=g(\Theta _{10}^{(1)}{{x}_{0}}+\Theta _{11}^{(1)}{{x}_{1}}+\Theta _{12}^{(1)}{{x}_{2}}+\Theta _{13}^{(1)}{{x}_{3}}) a1(2)=g(Θ10(1)x0+Θ11(1)x1+Θ12(1)x2+Θ13(1)x3)
a 2 ( 2 ) = g ( Θ 20 ( 1 ) x 0 + Θ 21 ( 1 ) x 1 + Θ 22 ( 1 ) x 2 + Θ 23 ( 1 ) x 3 ) a_{2}^{(2)}=g(\Theta _{20}^{(1)}{{x}_{0}}+\Theta _{21}^{(1)}{{x}_{1}}+\Theta _{22}^{(1)}{{x}_{2}}+\Theta _{23}^{(1)}{{x}_{3}}) a2(2)=g(Θ20(1)x0+Θ21(1)x1+Θ22(1)x2+Θ23(1)x3)
a 3 ( 2 ) = g ( Θ 30 ( 1 ) x 0 + Θ 31 ( 1 ) x 1 + Θ 32 ( 1 ) x 2 + Θ 33 ( 1 ) x 3 ) a_{3}^{(2)}=g(\Theta _{30}^{(1)}{{x}_{0}}+\Theta _{31}^{(1)}{{x}_{1}}+\Theta _{32}^{(1)}{{x}_{2}}+\Theta _{33}^{(1)}{{x}_{3}}) a3(2)=g(Θ30(1)x0+Θ31(1)x1+Θ32(1)x2+Θ33(1)x3)
h Θ ( x ) = g ( Θ 10 ( 2 ) a 0 ( 2 ) + Θ 11 ( 2 ) a 1 ( 2 ) + Θ 12 ( 2 ) a 2 ( 2 ) + Θ 13 ( 2 ) a 3 ( 2 ) ) {{h}_{\Theta }}(x)=g(\Theta _{10}^{(2)}a_{0}^{(2)}+\Theta _{11}^{(2)}a_{1}^{(2)}+\Theta _{12}^{(2)}a_{2}^{(2)}+\Theta _{13}^{(2)}a_{3}^{(2)}) hΘ(x)=g(Θ10(2)a0(2)+Θ11(2)a1(2)+Θ12(2)a2(2)+Θ13(2)a3(2))

上面进行的讨论中只是将特征矩阵中的一行(一个训练实例)喂给了神经网络,我们需要将整个训练集都喂给我们的神经网络算法来学习模型。

我们可以知道:每一个 a a a都是由上一层所有的 x x x和每一个 x x x所对应的决定的。

(我们把这样从左到右的算法称为前向传播算法( FORWARD PROPAGATION ))

x x x, θ \theta θ, a a a 分别用矩阵表示:
在这里插入图片描述

我们可以得到 θ ⋅ X = a \theta \cdot X=a θX=a

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/211678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于卷积神经网络的肺炎影像分类分割智能诊断系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义: 肺炎是一种常见的呼吸系统感染疾病,其主要病因包括细菌、病毒和真菌等。肺炎的早期诊断对于患者的治疗和预后至关重要。传统的肺炎诊断方…

HttpRunner的测试用例分层机制

测试用例分层介绍: 在接口自动化测试维护过程中,由于测试用例的增加和需求变更导致测试用例的调整,使自动化测试用例的维护非常麻烦,直接关系到自动化测试能否持续有效地在项目中开展。 概括来说,测试用例分层机制的核…

字符函数 和 字符串函数

今天我打算介绍一些字符函数和字符串函数,有一些字符串函数我实现了模拟,但文章中没有放出来,如果需要的欢迎来到我的gitee里面拿取(在test.c11-23里面) 这是我的gitee:小汐 (lhysxx) - Gitee.com 字符函数 1. islow…

oj赛氪算法练习

单词翻转 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);String sentence scanner.nextLine();String[] words sentence.split(" ");for (String word : words) {StringBuilder …

项目中遇到的半导体公司

作为一个技术人,我并不是亲美,从技术的实事求是角度讲,不得不感叹欧美的半导体技术。他们的datasheet能学到的东西太多太多;我甚至佩服他们缜密的逻辑。从他们的文章中领悟我们技术到底有多low,没办法一个一个了解所有…

华为OD机试 - 悄悄话(Java JS Python C)

题目描述 给定一个二叉树,每个节点上站一个人,节点数字表示父节点到该节点传递悄悄话需要花费的时间。 初始时,根节点所在位置的人有一个悄悄话想要传递给其他人,求二叉树所有节点上的人都接收到悄悄话花费的时间。 输入描述 给定二叉树 0 9 20 -1 -1 15 7 -1 -1 -1 -1 …

[c]比较月亮大小

本题的难点就是分情况讨论 #include<stdio.h> int main() {int n;scanf("%d",&n);int arr2[n];int p;for(int m0;m<n-1;m){scanf("%d",&arr2[m]);//输入n个数保存到数组}if(n1)//当输入一个数据时&#xff0c;输入0&#xff0c;可以判断…

思维模型 韦伯-费希纳定律

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。感觉与刺激成对数关系。 1 韦伯-费希纳定律的应用 1.1 韦伯-费希纳定律在工业设计中的应用 1 苹果公司的 iPhone 设计 苹果公司的 iPhone 设计是韦伯-费希纳定律在工业设计中的经典应用之…

手敲MyLinkedList,简单了解其运行逻辑

1.LinkedList的介绍和结构 LinkedList的底层是双向链表结构&#xff0c;相对于之前的单向无头非循环链表来说&#xff0c;LinkedList最大的区别就是该链表可以增加了一条链接逻辑&#xff0c;可以从最后一个节点通过地址访问来到整个链表的头结点。 通过以下集合框架&#xff0…

【Java 基础】15 注解

文章目录 1.什么是注解2.元注解1&#xff09;定义2&#xff09;分类 3.内置注解4.自定义注解5.注解的基本语法6.验证注解是否生效7.注解的使用场景8.注解的注意事项结语 1.什么是注解 注解&#xff08;Annotation&#xff09;可以理解成一种特殊的 “注释” 注解定义时以 符号…

02.PostgreSQL 查询处理期间发生了什么?

PostgreSQL 查询处理期间发生了什么&#xff1f; 文中主要内容引用自PostgreSQL指南&#xff1a;内幕探索 查询处理是PostgreSQL中最为复杂的子系统。如PostgreSQL官方文档所述&#xff0c;PostgreSQL支持SQL2011标准中的大多数特性&#xff0c;查询处理子系统能够高效地处理这…

深度学习记录--梯度下降法

什么是梯度下降法&#xff1f; 梯度下降法是用来求解成本函数cost函数中使得J(w,b)函数值最小的参数(w,b) 梯度下降法的实现 通过对参数w,b的不断更新迭代&#xff0c;使J(w,b)的值趋于局部最小值或者全局最小值 如何进行更新&#xff1f; 以w为例&#xff1a;迭代公式 ww-…

Spring MVC学习随笔-控制器(Controller)开发详解:接受客户端(Client)请求参数

学习视频&#xff1a;孙哥说SpringMVC&#xff1a;结合Thymeleaf&#xff0c;重塑你的MVC世界&#xff01;&#xff5c;前所未有的Web开发探索之旅 第三章、SpringMVC控制器开发详解 3.1 核心要点 &#x1f4a1; 1. 接受客户端&#xff08;client&#xff09;请求参数[讲解] 2…

MySQL 临时数据空间不足导致SQL被killed 的问题与扩展

开头还是介绍一下群&#xff0c;如果感兴趣PolarDB ,MongoDB ,MySQL ,PostgreSQL ,Redis, Oceanbase, Sql Server等有问题&#xff0c;有需求都可以加群群内&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;&#xff08;共1730人左右 1 2 3 4 5&#xff0…

【java+vue+微信小程序项目】从零开始搭建——健身房管理平台(2)后端跨域、登录模块、springboot分层架构、IDEA修改快捷键、vue代码风格

项目笔记为项目总结笔记,若有错误欢迎指出哟~ 【项目专栏】 【java+vue+微信小程序项目】从零开始搭建——健身房管理平台(1)spring boot项目搭建、vue项目搭建、微信小程序项目搭建 【java+vue+微信小程序项目】从零开始搭建——健身房管理平台(2)后端跨域、登录模块、sp…

自然语言处理 (NLP) 中的组合语义分析

埃弗顿戈梅德&#xff08;Everton Gomede&#xff09; 一、介绍 自然语言处理 &#xff08;NLP&#xff09; 中的组合语义分析是一个引人入胜且复杂的话题。为了充分理解它&#xff0c;将这个概念分解成它的基本组成部分是至关重要的&#xff1a;组合语义及其在NLP中的应用。组…

【开源】基于JAVA的超市账单管理系统

项目编号&#xff1a; S 032 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S032&#xff0c;文末获取源码。} 项目编号&#xff1a;S032&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统设计3.1 总体设计3.2 前端设计3…

EasyExcel写入多个sheet

直接上代码&#xff1a; public static void main(String[] args) {// 设置excel工作簿ExcelWriter excelWriter EasyExcel.write("F:\\excel\\a.xls").build();List<User> userList new ArrayList<>();userList.add(new User("lisi", "…

Redis缓存的使用

什么是缓存 缓存就是数据交换的缓冲区&#xff0c;是存储数据的临时地方&#xff0c;一般读写性能较高。 缓存的作用&#xff1a; 降低后端负载提高读写效率&#xff0c;降低响应时间 缓存的成本&#xff1a; 数据一致性成本代码维护成本运维成本 Redis特点 键值型数据库…