树和二叉树的基本概念和堆的实现

树的概念及结构

树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
在这里插入图片描述

1.有一个特殊的结点,称为根结点,根节点没有前驱结点
2.除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.因此,树是递归定义的

这里大家要注意到一个点:树形结构中,子树之间不能有交集,否则就不是树形结构
例如:
以下几种情况都不是树
在这里插入图片描述

树的相关概念

在这里插入图片描述
上图是一棵树,我们用他来了解相关的定义:
节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; // 第一个孩子结点
 struct Node* _pNextBrother; // 指向其下一个兄弟结点
 DataType _data; // 结点中的数据域
};

孩子兄弟表示法就是一个节点带着一个数据,一个孩子,一个兄弟
孩子指向下一层的第一个孩子节点,兄弟节点则指向右侧的同一层的兄弟节点
在这里插入图片描述

二叉树的概念及结构

二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 或者为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
    在这里插入图片描述
    你会发现二叉树的规则:
    二叉树不存在度大于2的结点
    二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

但是二叉树也可以是空树或者只有一个节点
在这里插入图片描述

特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树
    在这里插入图片描述
    满二叉树一定是完全二叉树!

二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是( 2^h)-1
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有 n0 = n2 +1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= log2(n+1) (ps: 是log以2为底,n+1为对数)

二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构

顺序存储

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
在这里插入图片描述
链式存储过于复杂,这里不做过多的讲解

堆的实现

这里我们用顺序结构来实现,和堆一起

堆的概念及结构

堆其实就是一颗二叉树:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树

其节点总是大于父节点的值就是小堆
节点的值总是小于父节点的值就是大堆
在这里插入图片描述
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整
在这里插入图片描述
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
在这里插入图片描述

向下调整算法

我们用父节点开始调整,如果当父节点的值小于子节点的值时我们就将其交换(此处的算法时调整为小堆)
代码实现如下:

void Swap(HPDataType* a, HPDataType* b)
{
	HPDataType temp = *a;
	*a = *b;
	*b = temp;
}
void Adjustdown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;;
	while (child < n)
	{
		if ((child + 1) < n && a[child] < a[child + 1])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
堆的初始化

初始化小菜一碟了

void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
堆的销毁

销毁也是轻车熟路了

void HeapDestory(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
判断堆是否为空

直接看size是否为0即可

int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}
返回堆顶元素

直接返回数组首元素(记得判断是否为就空)

HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	return hp->a[0];
}
堆增加元素

增加元素前我们首先判断数组是否已满,看是否需要扩容
然后将数组size位置赋值,同时size++,然后再用向下(上)调整算法

void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	if (hp->size == hp->capacity)
	{
		int newcapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;
		HPDataType* temp = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (temp == NULL)
		{
			perror("realloc");
			return;
		}
		hp->a = temp;
		hp->capacity = newcapacity;
	}
	hp->a[hp->size] = x;
	hp->size++;
	Adjustup(hp->a, hp->size - 1);
}
堆删除元素(堆顶)

栈的删除元素不能直接删除,因为因为直接删除头部元素后,父子关系全乱了,还需要重新建堆,所以我们首先进行首位交换,然后删除掉后面的的元素,再调整堆

void HeapPop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);//先交换首尾
	hp->size--;//再删除
	Adjustdown(hp->a, hp->size, 0);//再重新排栈
}

堆的实现完整代码如下:

void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}


void HeapDestory(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}


int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}


HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	return hp->a[0];
}


void Swap(HPDataType* a, HPDataType* b)
{
	HPDataType temp = *a;
	*a = *b;
	*b = temp;
}


void Adjustup(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}


void Adjustdown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;;
	while (child < n)
	{
		if ((child + 1) < n && a[child] < a[child + 1])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[parent], &a[child]);
			parent = child;;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}


void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	if (hp->size == hp->capacity)
	{
		int newcapacity = hp->capacity == 0 ? 4 : hp->capacity * 2;
		HPDataType* temp = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (temp == NULL)
		{
			perror("realloc");
			return;
		}
		hp->a = temp;
		hp->capacity = newcapacity;
	}
	hp->a[hp->size] = x;
	hp->size++;
	Adjustup(hp->a, hp->size - 1);
}


void HeapPop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));
	Swap(&hp->a[0], &hp->a[hp->size - 1]);//先交换首尾
	hp->size--;//再删除
	Adjustdown(hp->a, hp->size, 0);//再重新排栈
}

好了,本篇博客到此结束,谢谢大家的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/210664.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码)

记第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码) RS type 1 衍射空间像计算傅里叶变换采样条件实际计算计算要求傅立叶变换法计算直接卷积方法计算代码傅立叶变换方法直接卷积https://zhuanlan.zhihu.com/p/624292239 Goodman, J. W. (2004). Intro…

logistic回归详解

为什么不直接统计标签数和预测结果数&#xff0c;计算精度&#xff1f; 因为 存在梯度为0的情况梯度不连续 为什么叫logistic回归 logistic是因为加了一个sigmoid函数&#xff0c;将输出预测值映射到【0&#xff0c;1】 有时候使用MSE损失函数&#xff0c;拟合 有时候使用c…

PyLMKit(5):基于网页知识库的检索增强生成RAG

基于网页知识库的检索增强生成RAG 0.项目信息 日期&#xff1a; 2023-12-2作者&#xff1a;小知课题: RAG&#xff08;Retrieval-Augmented Generation&#xff0c;检索增强生成&#xff09;是一种利用知识库检索的方法&#xff0c;提供与用户查询相关的内容&#xff0c;从而…

基于SpringBoot实现SSMP整合

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…

【Gstreamer】自定义Plugin及调用Plugin

Gstreamer自定义Plugin及调用自定义Plugin Gstreamer支持开发者自己创建Plugin&#xff0c;创建后的Plugin可以通过工具gst-inspect-1.0查看&#xff0c;并在代码中调用自定义的plugin。 Gstreamer 官网中给出了Plugin创建教程&#xff0c;但实际上如果按照教程一步步走&…

kali学习

目录 黑客法则&#xff1a; 一&#xff1a;页面使用基础 二&#xff1a;msf和Windows永恒之蓝漏洞 kali最强渗透工具——metasploit 介绍 使用永恒之蓝进行攻击 ​编辑 使用kali渗透工具生成远程控制木马 渗透测试——信息收集 域名信息收集 黑客法则&#xff1a; 一&…

你好!二分查找【JAVA】

1.初次相识 二分查找又称折半查找&#xff0c;是一种在有序数组中查找特定元素的算法。二分查找的基本思想是&#xff1a;通过不断地二分数组的中间元素&#xff0c;缩小查找区间&#xff0c;直到找到目标元素或者确定目标元素不存在为止。 二分查找的时间复杂度为O(logn)&…

CIS|安森美微光近红外增强相机论文解析

引言 在之前的文章中&#xff0c;我们介绍了索尼、安森美以及三星等Sensor厂家在车载领域中的技术论文&#xff0c;分析了各个厂家不同的技术路线、Sensor架构以及差异点。今天&#xff0c;笔者借豪威科技在移动端200Mega Pixels产品的技术论文&#xff0c;讲解消费级CIS传感器…

Linux查看计算机处理器相关的信息

采用命令lscpu。部分结果如下&#xff1a;

人工智能时代:AIGC的横空出世

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、网络奇遇记 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 什么是AIGC?二. AIGC的主要特征2.1 文本生成2.2 图像生成2.3 语音生成2.4 视…

openGauss学习笔记-137 openGauss 数据库运维-例行维护-检查和清理日志

文章目录 openGauss学习笔记-137 openGauss 数据库运维-例行维护-检查和清理日志137.1 检查操作系统日志137.2 检查openGauss运行日志137.3 清理运行日志 openGauss学习笔记-137 openGauss 数据库运维-例行维护-检查和清理日志 日志是检查系统运行及故障定位的关键手段。建议按…

Azure Machine Learning - Azure AI 搜索中的索引器

在 Azure AI 搜索中&#xff0c;搜索索引是可搜索的内容&#xff0c;可供搜索引擎用于索引编制、全文搜索和筛选后查询。 索引由架构定义并保存到搜索服务中&#xff0c;第二步是数据导入。 除了在主数据存储中&#xff0c;此内容也存在于搜索服务中&#xff0c;这是在新式应用…

堆内存参数如何设置?

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一份大厂面试资料《史上最全大厂面试题》&#xff0c;Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

微软Copilot魔法来袭!用自然语言,点燃你的工作热情

近日我们发布了全新Copilot功能&#xff0c;旨在通过智能化的工作方式&#xff0c;提高企业整体的生产力和客户体验。新一代的Copilot结合了先进的AI技术&#xff0c;通过自然语言交互&#xff0c;为用户提供即时、个性化的信息和解决方案。这一变革性的工具将为现场服务人员提…

(二)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法&#xff08;TTA&#xf…

分析实现HarmonyOS中的Linux内核架构模式

在当今的科技领域&#xff0c;操作系统是各种智能设备运行的关键所在。而在这方面&#xff0c;华为的鸿蒙系统备受瞩目。那么&#xff0c;鸿蒙系统技术架构是怎样的呢&#xff1f;本文将为您揭开这一神秘面纱。 首先&#xff0c;我们需要了解鸿蒙系统的基本架构。鸿蒙系统采用…

Azure Machine Learning - 使用 REST API 创建 Azure AI 搜索索引

本文介绍如何使用 Azure AI 搜索 REST AP和用于发送和接收请求的 REST 客户端以交互方式构建请求。 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦硕&#xff0c;复旦机器人智能实验室成员&…

windows判断exe应用程序是否在使用的bat脚本

脚本 REM 查询进程是否存在 tasklist|findstr /i "mysqld.exe">nul &&echo y >2.log ||echo n >2.log REM 读取文本内容赋值给变量 set /P resu<2.log if %resu% y (echo process in use ) else (echo process not in use )我们已mysqld.exe…

【网络安全技术】实体认证技术Kerberos

一、什么是Kerberos Kerberos解决的是客户端与服务器通信场景中&#xff0c;确保客户端服务器双方的身份可信&#xff0c;并提供对称密钥的分发来加密传输。是一个应用层的协议。 二、一个简单的模型 1.看这个基础的模型&#xff0c;客户端要和服务器通信&#xff0c;他先将自…

百度/抖音/小红书/微信搜索品牌形象优化怎么做?

搜索口碑是网络营销不可或缺的一部分&#xff0c;企业如何做好品牌搜索口碑优化呢&#xff1f;小马识途营销顾问建议从以下几方面入手。 1. 通过关键字优化提高自身知名度 通过对竞争对手和目标客户的关键字进行分析&#xff0c;企业可以确定哪些关键字可以提高自身品牌知名度。…