公共部门生成式人工智能的未来

作者:Dave Erickson

最近,我与 IDC Government Insights 研究副总裁阿德莱德·奥布莱恩 (Adelaide O’Brien) 坐下来讨论了全球公共部门生成式人工智能的当前和未来状况。 完整的对话可以按需查看,但我也想强调讨论中的一些要点。 我们的目标是讨论我们现在看到的用例、公共组织面临的障碍,并交流组织如何利用生成式人工智能为员工、选民和更大的数字化转型带来的价值的最佳实践。

公共部门的生成式人工智能:现状

IDC 研究表明,59% 的政府机构正处于其组织内生成式 AI 使用的初级阶段(相比之下,只有 16% 的政府机构正在 “大力投资”)。展望未来,IDC 分享了有关公共部门领导者如何看待他们的近期生成式人工智能目标路线图的更多见解:

  • 全球 62% 的政府表示,他们将在未来 12 个月内在客户服务和支持中使用人工智能。
  • 全球 49% 的教育机构表示,对话式应用程序(例如聊天机器人和语音机器人)最有希望在短期内使用。

更进一步,IDC 根据其研究以及与政府客户的咨询对话,概述了公共部门组织在未来几年可能采用和整合生成式人工智能的进展情况。

公共部门生成式人工智能用例的 3 个领域

IDC 根据组织成熟度级别将政府用例分为三个阶段或范围。 与一些着眼于生成式人工智能集成的收入潜力的私营部门同行不同,到目前为止,公共部门组织正在采取更加谨慎的 “爬行-走-跑” 方法。

第一阶段:根据 IDC 的说法,第一个阶段是在未来一年左右发生渐进式创新,因为组织主要在内部测试生成式人工智能的领域。 最初,用例侧重于员工生产力和满意度,例如围绕内部合同管理、采购和通过沙箱环境创建代码的试点计划。 换句话说,采取复杂、重复的以数据为中心的任务,并通过生成人工智能应用程序结合机构的专有数据来简化它们。 一旦这些试点计划启动,组织计划扩展到影响外部利益相关者的用例,例如通过将选民与个性化的相关数据连接起来来改善选民的帮助台或呼叫中心体验。

第二阶段:一旦组织对第一阶段发生的生成式人工智能文化转变感到相当满意,用例就可以扩展到更具颠覆性的创新。 IDC 预计这一前景将在未来几年内普遍存在。 这里的用例连接 “前台到后台” 并利用智能自动化。 示例包括关键基础设施保护、用于调查的跨机构数据共享以及福利欺诈保护。

第三阶段:IDC 框架的第三个也是最后一个阶段的用例继续扩大范围,包括新的业务模式和跨复杂生态系统的集成。 在这里,各组织正在围绕数字立法、国家情报优势和智能互联校园等系统性主题进行整体规划

大规模生成人工智能需要安全和信任

尽管生成式人工智能前景广阔,但领导者也面临着数据隐私、员工满意度以及道德与合规性方面的担忧。 IDC 数据显示,43% 的全球政府领导人担心生成式人工智能会危及他们对数据和知识产权的控制,41% 的人担心生成式人工智能的使用会让他们面临品牌和监管风险。

对于公共部门来说,安全和信任对于任何生成式人工智能的实施都是至关重要的 —— 对私营部门合作伙伴的信任,对政策和道德准则的信任,以及对私人数据保密的信任。 正如阿德莱德·奥布莱恩 (Adelaide O’Brien) 指出的那样,“政府只有以信任为中心,才能大规模提供新一代人工智能价值。” 对于公共部门组织来说,这意味着对负责任的人工智能的政策和指南进行战略思考,包括:

  • 为整个组织制定人工智能路线图
  • 设计智能架构
  • 绘制实施和成功所需的技能
  • 确保你的敏感数据不会用于训练大型语言模型 (LLM)
  • 将数据保存在主权领土上
  • 确保你拥有自己的加密密钥

上述所有考虑因素的关键是 “人机交互” 方法,该方法可确保生成式人工智能输出经过人类交叉检查是否存在错误信息,特别是考虑到生成式人工智能产生幻觉的可能性。

使用检索增强生成(RAG)来使得模型着地

IDC 指出,全球 36% 的政府领导人担心生成式人工智能使用的准确性或潜在毒性(偏差、输出中的幻觉)。 为了确保生成式 AI 输出尽可能准确和及时,IDC 和 Elastic® 都建议使用检索增强生成 (retrieval augmented generation - RAG)。 RAG 是一种自然语言处理技术,使组织能够将自己的专有数据与生成式人工智能结合使用,以提高内容输出的质量。 通过利用你自己的特定领域数据,RAG 为生成式 AI 搜索查询提供相关的内部上下文,从而提高了准确性并减少了幻觉,为 LLM 奠定了基础。

RAG 与 Elastic 如何使公共部门受益

  • 基于事实:使用 Elastic 中的同步数据获得准确、最新的特定于任务的结果,这些结果通过上下文窗口传递到生成式 AI 模型。
  • 实现卓越相关性的灵活性:将你自己的 transformer 模型引入 Elastic,与第三方模型集成,或使用 Elastic 的 Learned Sparse EncodeR (ELSER)。
  • 隐私和安全:应用 Elastic 对聊天和问答应用程序基于角色的访问控制的本机支持。
  • 成本效益:使用较小的 LLMs,与微调或依赖基于 LLM 的知识相比,推理成本降低了两个数量级。

聆听完整的线上炉边聊天 (fireside chat)

立即查看与 IDC 的整个对话。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标记是 Elasticsearch N.V. 在美国和其他国家/地区的商标、徽标或注册商标。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:The future of generative AI in public sector | Elastic Blog

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/209536.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Geoserver】SLD点位样式(PointSymbolizer)设计全通

SLD文件可以控制geoserver的样式管理,这里专门针对点位进行设计,首先点位的设计需要用到这面这个大标签 之前的项目中已经用到了很多关于面的样式管理,这里新学习的是关于点的样式管理 PointSymbolizer 参考资料地址:https://doc…

深入解析SpringBoot的请求响应机制

SpringBootWeb请求响应 前言1. 请求1.1 Postman介绍 1.2 简单参数1.2.1 原始方式1.2.2 SpringBoot方式1.2.3 参数名不一致 1.3 实体参数1.3.1 简单实体对象1.3.2 复杂实体对象 1.4 数组集合参数1.4.1 数组1.4.2 集合 1.5 日期参数1.6 JSON参数1.7 路径参数 2. 响应2.1 Response…

C#图像处理OpenCV开发指南(CVStar,06)——图片光滑处理之高斯滤波(GaussianBlur)的实现代码

1 高斯滤波 原理就不讲了,文章很多。 基础代码请参阅: C#图像处理OpenCV开发指南(CVStar,03)——基于.NET 6的图像处理桌面程序开发实践第一步https://blog.csdn.net/beijinghorn/article/details/134684471?spm10…

RHCSA学习笔记(RHEL8) - Part1.RH124

Chapter Ⅰ 入门 - Linux 开源系统,命令行,模块化(软件包的形势) - Windows 闭源Linux是类UNIX系统,mac系统也是类UNIX系统,所以二者的图形化界面比较相似 开源许可证:公共版权;宽…

uniapp-从后台返回的一串地址信息上,提取省市区进行赋值

1.这是接口返回的地址信息 2.要实现的效果 3.实现代码&#xff1a; <view class"address">{{item.address}}</view>listFun() {let url this.$url.url.positionInfoCompany;let param {page: this.page,limit: this.limit,keyword: this.keyword,};thi…

Rust语言项目实战(二) - 准备键盘和终端屏幕

上一章节中&#xff0c;我们实现了游戏开始音频的播放&#xff0c;本章我们开始编写游戏界面。我们的游戏是在命令行终端中运行的&#xff0c;因此编写的界面也是终端中展示的界面&#xff0c;上一章中&#xff0c;我们已经把相关的依赖包crossterm添加到了依赖列表中。本章首先…

【嵌入式Linux程序开发综合实验】-1(附流程图) | ARM开发板 | 测试“Hello World” | Makefile文件 | 实现加法相加

任务&#xff1a;编写在标准输出终端输出“Hello World&#xff01;”的C语言代码以及输入指定数字相加结果、Makefile&#xff0c;并分别编译出在PC与ARM上运行的可执行程序文件。 设备以及工具 硬件&#xff1a;Linux开发板、PC机、串口连接线 图1 Linux开发板以及串口接线 …

原生video设置控制面板controls显示哪些控件

之前我们学习了如何使用原生video播放视频 今天来一个进阶版的——设置控制面板controls显示哪些控件 先看一下当我们使用原生video时&#xff0c;controls属性为true时&#xff0c;相关代码如下&#xff1a; 正常的控制面板默认显示的控件有&#xff1a;播放、时间线、音量调…

四、Zookeeper节点类型

目录 1、临时节点 2、永久节点 Znode有两种,分别为临时节点和永久节点。 节点的类型在创建时即被确定,并且不能改变。 1、临时节点 临时节点的生命周期依赖于创建它们的会话。一旦会话结束,临时节点将被自动删除,

机器学习笔记 - 基于百度飞桨PaddleSeg的人体分割模型以及TensorRT部署说明

一、简述 虽然Segment Anything用于图像分割的通用大模型看起来很酷(飞桨也提供分割一切的模型),但是个人感觉落地应用的时候心里还是更倾向于飞桨这种场景式的,因为需要用到一些人体分割的需求,所以这里主要是对飞桨高性能图像分割开发套件进行了解和使用,但是暂时不训练…

LiteOS内存管理:TLSF算法

问题背景 TLSF算法主要是面向实时操作系统提出的&#xff0c;对于RTOS而言&#xff0c;执行时间的确定性是最根本的&#xff0c;然而传统的动态内存分配器&#xff08;DMA&#xff0c;Dynamic Memory Allocator&#xff09;存在两个主要问题&#xff1a; 最坏情况执行时间不确…

Vue3+nuxt+ts项目引入高德地图API实现步骤

看了好多相关的文章都没有完全贴合选用Vue3nuxtts框架的&#xff0c;也不太靠谱&#xff0c;只好自己踩坑实现了 首先去高德开放平台用自己的账号申请一个key&#xff0c;位置如下&#xff0c;申请好后保存好生成的key 我们使用vuemap/vue-amap&#xff0c;一个高德地图2.0版本…

微信小程序自定义tabBar简易实现

文章目录 1.app.json设置custom为true开启自定义2.根目录创建自定义的tab文件3.app.js全局封装一个设置tabbar选中的方法4.在onshow中使用选中方法最终效果预览 1.app.json设置custom为true开启自定义 2.根目录创建自定义的tab文件 index.wxml <view class"tab-bar&quo…

Vue + Element ui 实现动态表单,包括新增行/删除行/动态表单验证/提交功能

原创/朱季谦 最近通过Vue Element ui实现了动态表单功能&#xff0c;该功能还包括了动态表单新增行、删除行、动态表单验证、动态表单提交功能&#xff0c;趁热打铁&#xff0c;将开发心得记录下来&#xff0c;方便以后再遇到类似功能时&#xff0c;直接拿来应用。 简化的页…

用通俗的方法讲解:大模型微调训练详细说明(附理论+实践代码)

本文内容如下 介绍了大模型训练的微调方法&#xff0c;包括prompt tuning、prefix tuning、LoRA、p-tuning和AdaLoRA等。 介绍了使用deepspeed和LoRA进行大模型训练的相关代码。 给出了petals的介绍&#xff0c;它可以将模型划分为多个块&#xff0c;每个用户的机器负责其中一…

七、FreeRTOS之FreeRTOS中断管理

这部分非常重要&#xff0c;小伙伴们必须要掌握的哈~本节需要学的内容如下&#xff1a; 1&#xff0c;什么是中断&#xff1f;&#xff08;了解&#xff09; 2&#xff0c;中断优先级分组设置&#xff08;熟悉&#xff09; 3&#xff0c;中断相关寄存器&#xff08;熟悉&…

VLAN间路由详细讲解

本次实验拓扑的主要概述以及设计到的相关技术 VLAN技术&#xff1a; VLAN&#xff08;Virtual Local Area Network&#xff09;即虚拟局域网&#xff0c;是将一个物理的LAN在逻辑上划分成多个广播域的通信技术。 每个VLAN是一个广播域&#xff0c;VLAN内的主机间可以直…

Leetcode—704.二分查找【简单】

2023每日刷题&#xff08;四十七&#xff09; Leetcode—704.二分查找 实现代码 int lower_bound(int* arr, int numsSize, int tar) {int left 0, right numsSize;int mid left (right - left) / 2;while(left < right) {mid left (right - left) / 2;if(arr[mid] …

论文精读 Co-DETR(Co-DINO、Co-Deformable-DETR)

DETRs with Collaborative Hybrid Assignments Training 基于协作混合分配训练的DETRs 论文链接&#xff1a;2211.12860.pdf (arxiv.org) 源码链接&#xff1a;https://github.com/Sense-X/Co-DETR 总结&#xff1a; Co-DETR基于DAB-DETR、Deformable-DETR和DINO网络进行了实…

ElasticSearch知识体系详解

1.介绍 ElasticSearch是基于Lucene的开源搜索及分析引擎&#xff0c;使用Java语言开发的搜索引擎库类&#xff0c;并作为Apache许可条款下的开放源码发布&#xff0c;是当前流行的企业级搜索引擎。 它可以被下面这样准确的形容&#xff1a; 一个分布式的实时文档存储&#xf…