Kafka中的auto-offset-reset配置

Kafka这个服务在启动时会依赖于Zookeeper,Kafka相关的部分数据也会存储在Zookeeper中。如果kafka或者Zookeeper中存在脏数据的话(即错误数据),这个时候虽然生产者可以正常生产消息,但是消费者会出现无法正常消费消息的情况。

所以在进行下述这个案例进行测试时,为了避免一些错误,可以将两个镜像服务全部进行重装,重装的镜像服务由于未设定数据存储方式(即采用非持久化的匿名数据卷),所以在重装以后会采用新的匿名数据卷,是一个全新的配置信息。

PS:同样是MQ,相比较而言,RabbitMQ针对异常情况的兼容处理比Kafka要好很多,使用Kafka需要有很丰富的经验,生产环境非必要不建议使用这个。

1、earliest

Windosw环境下面使用下述两个命令重装Zookeeper和Kafka:

docker run -d --name zookeeper -p 2181:2181 -t zookeeper:latest
docker run  -d --name kafka -p 9092:9092 -e KAFKA_ZOOKEEPER_CONNECT=192.168.1.15:2181 -e KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.1.15:9092 -e KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 -e TZ="Asia/Shanghai" wurstmeister/kafka:latest

假设前面的环境准备我已经完成了,现在正式进入案例测试流程。当前kafka的版本为2.8.11,Spring Boot的版本为2.7.6,在pom.xml中引入下述依赖:

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <version>2.8.11</version>
</dependency>

然后在yml配置文件进行如下配置:

spring:
  kafka:
    bootstrap-servers: 127.0.0.1:9092
    consumer:
      group-id: 0
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      auto-offset-reset: earliest
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

在项目中创建一个生产者用于往主题topic0中投递消息,如下所示:

import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@Slf4j
@RestController
@RequestMapping("/kafka")
public class KafkaProducer {

    // 自定义的主题名称
    public static final String TOPIC_NAME="topic0";

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @RequestMapping("/send")
    public String send(@RequestParam("msg")String msg) {
        log.info("准备发送消息为:{}",msg);
        // 1.发送消息
        ListenableFuture<SendResult<String,String>> future=kafkaTemplate.send(TOPIC_NAME,msg);
        future.addCallback(new ListenableFutureCallback<SendResult<String, String>>() {
            @Override
            public void onFailure(Throwable throwable) {
                // 2.发送失败的处理
                log.error("生产者 发送消息失败:"+throwable.getMessage());
            }
            @Override
            public void onSuccess(SendResult<String, String> stringObjectSendResult) {
                // 3.发送成功的处理
                log.info("生产者 发送消息成功:"+stringObjectSendResult.toString());
            }
        });
        return "接口调用成功";
    }
}

项目启动以后,如果Kafka中没有topic0这个主题,那么在利用上述接口首次往Kafka中投递消息时会创建这个主题。此处利用 /kafka/send?msg=xxx 接口往主题topic0中生产10条消息,接着再在项目中创建一个消费者用于消息主题topic0中的消息,如下所示:

import java.util.Optional;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.KafkaHeaders;
import org.springframework.messaging.handler.annotation.Header;
import org.springframework.stereotype.Component;

@Slf4j
@Component
public class KafkaConsumer {

    // 自定义topic
    public static final String TOPIC_NAME="topic0";

    @KafkaListener(topics = TOPIC_NAME, groupId = "ONE")
    public void topic_one(ConsumerRecord<?, ?> record, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
        Optional message = Optional.ofNullable(record.value());
        if (message.isPresent()) {
            Object msg = message.get();
            log.info("消费者One消费了消息:Topic:" + topic + ",Record:" + record + ",Message:" + msg);
        }
    }
}

然后再重启整个项目, 这时控制台中会打印下述信息,消费者One消费了10条之前投递的消息:

消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 0, CreateTime = 1701261195020, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 1),Message:1
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 1, CreateTime = 1701261203540, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 2),Message:2
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 2, CreateTime = 1701261211937, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 3),Message:3
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 3, CreateTime = 1701261429324, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 4),Message:4
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 4, CreateTime = 1701261435706, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 5),Message:5
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 5, CreateTime = 1701261439877, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 6),Message:6
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 6, CreateTime = 1701261444315, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 7),Message:7
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 7, CreateTime = 1701261448213, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 8),Message:8
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 8, CreateTime = 1701261455452, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 9),Message:9
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 9, CreateTime = 1701261459889, serialized key size = -1, serialized value size = 2, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 10),Message:10

同时在Kafka服务的日志文件目录中会产生一些记录消息被消费到的偏移量文件,在消息没有被消费之前,是不会产生类似于 __consumer_offsets_x 的文件,如下图所示:

2、latest

再次重装Zookeeper和Kafka,并清空Zookeeper和Kafka中的数据,将上述yml文件中的 auto-offset-reset 配置修改为latest,如下所示:

spring:
  kafka:
    bootstrap-servers: 127.0.0.1:9092
    consumer:
      group-id: 0
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      auto-offset-reset: latest
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

然后屏蔽掉消费者消费消息的监听类,重启整个项目,再次调用 /kafka/send?msg=xxx 接口往主题topic0中生产10条消息。 接着再将消费者消费消息的监听类放开,重启项目,这时可以看到消费者One并没有消费之前发送的10条消息,但是这时在Kafka服务的日志文件目录中会产生一些记录消息被消费到的偏移量文件,类似于 __consumer_offsets_x 的文件。

我们再次调用 /kafka/send?msg=11 接口往主题topic0中生产1条消息,这时控制台中会输出下述内容:

消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 10, CreateTime = 1701311220521, serialized key size = -1, serialized value size = 2, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 11),Message:11

可以看到kafka中没有offset时,如果 auto-offset-reset 配置设置为latest,消费者会从最近的offset开始消费,就是新加入到主题中的消息才会被消费。 

3、none

再次重装Zookeeper和Kafka,并清空Zookeeper和Kafka中的数据,将上述yml文件中的 auto-offset-reset 配置修改为none,如下所示:

spring:
  kafka:
    bootstrap-servers: 127.0.0.1:9092
    consumer:
      group-id: 0
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      auto-offset-reset: none
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

然后屏蔽掉消费者消费消息的监听类,重启整个项目,再次调用 /kafka/send?msg=xxx 接口往主题topic0中生产10条消息。 接着再将消费者消费消息的监听类放开,重启项目,可以看到在项目重启过程中控制台中会报下述异常信息: 

org.apache.kafka.clients.consumer.NoOffsetForPartitionException: Undefined offset with no reset policy for partitions: [主题名-xxx]

虽然消费者One并没有消费之前发送的10条消息,但是在Kafka服务的日志文件目录中仍然也会产生一些记录消息被消费到的偏移量文件,类似于 __consumer_offsets_x 的文件。

同时通过日志打印信息,我们也可以看到由于异常,该消费者服务已经停止了,不能再消费新的消息。

Fatal consumer exception; stopping container

所以我们再次调用/kafka/send?msg=11接口往主题topic0中生产1条消息,可以看到控制台是没有任何关于消费者消费消息的日志信息。PS:一般生产环境基本用不到该参数

4、默认配置

如果我们没有在yml文件中显式配置auto-offset-reset,那么其默认值为latest

5、多个消费者组消费同一个主题,配置为earliest

再次重装Zookeeper和Kafka,并清空Zookeeper和Kafka中的数据,将上述yml文件中的 auto-offset-reset 配置修改为earliest, 构建两个消费者组One和Two来消费同一个主题中的消息:

import java.util.Optional;

import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.KafkaHeaders;
import org.springframework.messaging.handler.annotation.Header;
import org.springframework.stereotype.Component;

@Slf4j
@Component
public class KafkaConsumer {

    // 自定义topic
    public static final String TOPIC_NAME="topic0";

    @KafkaListener(topics = TOPIC_NAME, groupId = "ONE")
    public void topic_one(ConsumerRecord<?, ?> record, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
        Optional message = Optional.ofNullable(record.value());
        if (message.isPresent()) {
            Object msg = message.get();
            log.info("消费者One消费了消息:Topic:" + topic + ",Record:" + record + ",Message:" + msg);
        }
    }

    @KafkaListener(topics = TOPIC_NAME, groupId = "TWO")
    public void topic_two(ConsumerRecord<?, ?> record, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
        Optional message = Optional.ofNullable(record.value());
        if (message.isPresent()) {
            Object msg = message.get();
            log.info("消费者TwO消费了: +++++++++++++++ Topic:" + topic + ",Record:" + record + ",Message:" + msg);
        }
    }
}

屏蔽两个消费者组,让它们暂时不监听主题 topic0,重启项目利用生产者往主题 topic0中投递三条消息。

打开消费者组One的屏蔽,重启项目可以看到消费者组One消费了3条数据:

消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 0, CreateTime = 1701323282779, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 1),Message:1
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 1, CreateTime = 1701323286219, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 2),Message:2
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 2, CreateTime = 1701323289105, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 3),Message:3

然后打开消费者组Two的屏蔽,重启项目可以看到消费者组Two也消费了3条数据: 

消费者TwO消费了: +++++++++++++++ Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 0, CreateTime = 1701323282779, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 1),Message:1
消费者TwO消费了: +++++++++++++++ Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 1, CreateTime = 1701323286219, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 2),Message:2
消费者TwO消费了: +++++++++++++++ Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 2, CreateTime = 1701323289105, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 3),Message:3

所以在Kafka服务的日志文件目录中产生的偏移量文件(__consumer_offsets_x ),针对的是每一个消费者组而言,它记录的是某一个消费者组已经消费到的消息偏移量。 

6、多个消费者组消费同一个主题消息,其中一个消费者组没有偏移量

再次重装Zookeeper和Kafka,并清空Zookeeper和Kafka中的数据,构建两个消费者组One和Two来消费同一个主题中的消息:

import java.util.Optional;
 
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.KafkaHeaders;
import org.springframework.messaging.handler.annotation.Header;
import org.springframework.stereotype.Component;
 
@Slf4j
@Component
public class KafkaConsumer {
 
    // 自定义topic
    public static final String TOPIC_NAME="topic0";
 
    @KafkaListener(topics = TOPIC_NAME, groupId = "ONE")
    public void topic_one(ConsumerRecord<?, ?> record, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
        Optional message = Optional.ofNullable(record.value());
        if (message.isPresent()) {
            Object msg = message.get();
            log.info("消费者One消费了消息:Topic:" + topic + ",Record:" + record + ",Message:" + msg);
        }
    }
 
    @KafkaListener(topics = TOPIC_NAME, groupId = "TWO")
    public void topic_two(ConsumerRecord<?, ?> record, @Header(KafkaHeaders.RECEIVED_TOPIC) String topic) {
        Optional message = Optional.ofNullable(record.value());
        if (message.isPresent()) {
            Object msg = message.get();
            log.info("消费者TwO消费了: +++++++++++++++ Topic:" + topic + ",Record:" + record + ",Message:" + msg);
        }
    }
}

在yml文件中不配置auto-offset-reset(即采用默认配置),打开消费者组One的监听,屏蔽消费者组Two的监听。

重启项目利用生产者往主题 topic0中投递三条消息,消费者组0ne立马消费了三条消息:

准备发送消息为:1
生产者 发送消息成功:SendResult [producerRecord=ProducerRecord(topic=topic0, partition=null, headers=RecordHeaders(headers = [], isReadOnly = true), key=null, value=1, timestamp=null), recordMetadata=topic0-0@0]
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 0, CreateTime = 1701324482632, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 1),Message:1
准备发送消息为:2
生产者 发送消息成功:SendResult [producerRecord=ProducerRecord(topic=topic0, partition=null, headers=RecordHeaders(headers = [], isReadOnly = true), key=null, value=2, timestamp=null), recordMetadata=topic0-0@1]
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 1, CreateTime = 1701324485351, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 2),Message:2
准备发送消息为:3
生产者 发送消息成功:SendResult [producerRecord=ProducerRecord(topic=topic0, partition=null, headers=RecordHeaders(headers = [], isReadOnly = true), key=null, value=3, timestamp=null), recordMetadata=topic0-0@2]
消费者One消费了消息:Topic:topic0,Record:ConsumerRecord(topic = topic0, partition = 0, leaderEpoch = 0, offset = 2, CreateTime = 1701324488104, serialized key size = -1, serialized value size = 1, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = 3),Message:3

这时再在yml文件中配置auto-offset-reset为None,打开消费者Two的屏蔽,然后重启项目这个时候会发现由于消费者组Two没有记录偏移量,所以在项目启动的过程中会报下述异常信息,该消费者组服务会停止监听:

Fatal consumer exception; stopping container
App info kafka.consumer for consumer-TWO-2 unregistered

7、总结

做了上述这么多的案例测试,各个消费者组都是按照预期去消费主题消息,其它情况的预期结果的原理都是一样的。  

如果kafka服务器记录有消费者消费到的offset,那么消费者会从该offset开始消费。如果Kafka中没有初始偏移量,或者当前偏移量在服务器上不再存在(例如,因为该数据已被删除),那么这时 auto.offset.reset 配置项就会起作用。

  • earliest:从最早的offset开始消费,就是partition的起始位置开始消费
  • latest:从最近的offset开始消费,就是新加入partition的消息才会被消费
  • none:服务启动时会抛出异常,消费者服务会停止

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/209502.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

linux上编写进度条

目录 一、预备的两个小知识1、缓冲区2、回车与换行 二、倒计时程序三、编写入门的进度条四、编写一个正式的五、模拟实现和下载速度相关的进度条 一、预备的两个小知识 1、缓冲区 首先认识一下缓冲区&#xff1a;先写一个.c文件如下&#xff1a; 我们执行一下这个程序时&…

抖音短视频账号矩阵系统开发新规则

一、抖音官方平台开发新规&#xff1a; 1.代发布管理应用api接口无法在做新的应用申请 仅针对企事业单位开放&#xff0c;目前要想开发新的抖音矩阵系统&#xff0c;就需要在原有的技术算法上进行新一步的调整。 能力介绍 网站应用开发者可以申请开通【代替用户发布内容到抖…

学习笔记8——JUC入门基础知识

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/contents/3/199561.html 进程和线程:进程是资源分配的最小单位&#xff0c;线程是CPU调度的最小单位 进程和线程的主要区别&#xff08;总结&#xff09;_进程和线程的区别-CSDN博客进程…

[HTML]Web前端开发技术6(HTML5、CSS3、JavaScript )DIV与SPAN,盒模型,Overflow——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…

LDO版图后仿性能下降

记录一下LDO&#xff0c;debug 问题1&#xff1a; LDO后仿输出电压下降&#xff0c;前仿输出1.8V&#xff0c;后仿却输出只有1.58V。 解决办法&#xff1a; 功率管的走线问题&#xff0c;布线太少&#xff0c;存在IR drop问题。功率管的面积比较大&#xff0c;需要横竖都多…

解决Linux中文乱码、字体横向问题

解决Linux中文乱码问题 1、locale --查看当先系统编码集 2、echo $LANG --查看当前使用的语言 3、vim ~/.bash_profile --修改配置文件 4、加入以下语句 export LC_ALL"zh_CN.UTF-8" export LANG"zh_CN.UTF-8" 5、source ~/.bash_profile --更新配置文…

docker 安装elasticsearch集群

准备工作 docker 安装好&#xff0c;docker compose 安装好编辑好docker-compose.yml文件&#xff08;本文会提供&#xff09;生成elastic-certificates.p12密钥&#xff0c;与docker-compose文件在同一个目录&#xff08;本文会介绍生成方式&#xff09;准备elasticsearch配置…

Unittest单元测试之unittest用例执行顺序

unittest用例执行顺序 当在一个测试类或多个测试模块下&#xff0c;用例数量较多时&#xff0c;unittest在执行用例 &#xff08;test_xxx&#xff09;时&#xff0c;并不是按从上到下的顺序执行&#xff0c;有特定的顺序。 unittest框架默认根据ACSII码的顺序加载测试用例&a…

钢铁ERP系统有哪些?钢铁ERP软件哪家好用

不同的钢铁材料有差异化的产成品&#xff0c;而这些成品又有多元化的营销策略和制造工艺&#xff0c;每道生产工艺存在差异化的管理方式与策略&#xff0c;而不同的销售策略对应多样化的价格机制等&#xff0c;繁多的业务数据采集和分析工作量较大。 近些年制造工艺的变革也促…

线性表——(3)线性表的链式存储及其运算的实现

一、前言&#xff1a; 由于顺序表的存储特点是用物理上的相邻关系实现逻辑上的相邻关系&#xff0c;它要求用连续的存储单元顺序存储线性表中各数据元素&#xff0c;因此&#xff0c;在对顺序表进行插入、删除时&#xff0c;需要通过移动数据元素来实现&#xff0c;这影响了运行…

Java 线程同步和通信

Android 11 废弃了AsyncTask 线程 Thread: 通过start 开启 源码: start0 native方法 通过虚拟机跟操作系统交互 进程和线程区别: 进程是操作系统的独立区域,各个区域互不干扰,一个进程可以有多条线程同时工作,进程大于线程,线程依赖进程,线程间可以共享资源 Runnable: 接口…

利用 FormData 实现文件上传、监控网路速度和上传进度

利用 FormData 实现文件上传 基础功能&#xff1a;上传文件 演示如下&#xff1a; 概括流程&#xff1a; 前端&#xff1a;把文件数据获取并 append 到 FormData 对象中后端&#xff1a;通过 ctx.request.files 对象拿到二进制数据&#xff0c;获得 node 暂存的文件路径 前端…

用 LangChain 搭建基于 Notion 文档的 RAG 应用

如何通过语言模型查询 Notion 文档&#xff1f;LangChain 和 Milvus 缺一不可。 在整个过程中&#xff0c;我们会将 LangChain 作为框架&#xff0c;Milvus 作为相似性搜索引擎&#xff0c;用二者搭建一个基本的检索增强生成&#xff08;RAG&#xff09;应用。在之前的文章中&a…

华为电视盒子 EC6108V9C 刷机成linux系统

场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 家里装宽带的时候会自带电视盒子&#xff0c;但是由于某些原因电视盒子没有用&#xff0c;于是就只能摆在那里吃土&#xff0c;闲来无事&#xff0c;搞一下 问题描述 提示&#xff1a;这里描述项目中遇到…

[FC][常见Mapper IRQ研究]

本次IRQ研究了如下: VRC2&4(Mapper21,23,25) VRC3(Mapper73) VRC6(Mapper24 & Mapper26) VRC7(Mapper85) MMC3(Mapper4) MMC4(Mapper10) MMC5(Mapper5) Mapper18 Mapper64 Namco163(Mapper19) Sunsoft FME-7(Mapper69) 共计11种Mapper的IRQ操作使用例子 代码内有详细注…

【CANoe】CANoe工具使用-实现CAN通道的收、发、录、回放报文

目录 资源及目标 1. 配置工程 1.1 新建配置工程 1.2 配置两路CANoe虚拟通道 1.3配置CAN通道参数 1.3.1 配置CAN1类型&#xff08;标准CAN或者CANFD&#xff09;&#xff0c;以及波特率&#xff08;CANFD需要配置数据场和仲裁场两个段的波特率&#xff09; 1.3.2配置CAN1…

电梯安全远程监控系统解决方案

一、方案背景 随着万丈高楼的平地起&#xff0c;电梯也成为了我们出入高层建筑最常用的工具之一。面对电梯数量的不断增加&#xff0c;电梯安全事故也是相继频发&#xff0c;因此关于电梯的安全运行就越来越受到社会各界的关注。电梯的使用在给人们出入高层建筑带来便利的同时&…

Normalizing Kalman Filters for Multivariate Time Series Analysis

l l l means latent state&#xff0c;LGM means ‘linear Gaussian state space models’ 辅助信息 作者未提供代码

高端网站设计公司 -蓝蓝设计数据可视化大屏服务

UI设计公司-蓝蓝设计&#xff08;北京兰亭妙微科技有限公司&#xff09;是一支由清华美院毕业的专业团队组成的设计公司。我们的设计师们在大屏科研信息软件UI设计领域拥有多年的工作经验和丰富的行业知识。我们对设计充满热爱&#xff0c;设计不仅是我们的专业和职业&#xff…

五、ZooKeeper的shell操作

目录 1、客户端连接 2、shell基本操作 2.1 操作命令