pytorch中Conv1d、Conv2d与Conv3d详解

1 卷积介绍

1.1 什么是卷积

卷积(convolution),是一种运算,你可以类比于加,减,乘,除,矩阵的点乘与叉乘等等,它有自己的运算规则,卷积的符号是星号*。表达式为:

连续卷积表达式:

离散卷积表达式为:

从参数上来看,x + (n-x) = n,可以类比为x + y = n,也就是说f, g的参数满足规律y = -x + n,即g的参数是f的参数先翻转再平移n。把g从右边褶到左边去,也就是卷积的卷的由来。然后在这个位置对两个函数的对应点相乘,然后相加,这个过程是卷积的积的过程。

因此卷积的过程可以理解为:翻转,滑动,叠加。其中翻转指的是g,滑动指的是n值在不断改变。最终将他们相乘相加。

1.2 卷积的意义

在泛函分析中,卷积、旋积或褶积是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。

如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积的意义如下:

  • 模拟生物视觉:卷积操作模拟了人眼对图像进行观察、辨认的过程,因此卷积在图像处理领域应用广泛。它可以帮助我们理解人类视觉系统如何工作,并且为我们提供了一种有效的处理图像和语音的方法。

  • 提升算法性能:卷积神经网络(CNN)是目前深度学习中最重要的模型之一,其基本结构就是卷积层,卷积操作在图像识别、语音识别和自然语言处理等领域提升了算法的性能。这使得卷积成为了现代机器学习和人工智能的重要组成部分。

  • 数据压缩:卷积可以通过降维和滤波等操作减小数据的尺寸,从而实现数据的压缩。这对于处理大规模数据、实现数据存储和传输非常有用。

1.3 图像的卷积处理

对图像的blur操作,即降噪平滑操作,就是使用的卷积运算,最终的效果取决于卷积核的设置。以单通道卷积为例。

均值卷积核,就是认为目标像素点的值是周围值的平均数,即周围各点对它的影响是一样的,此处卷积核以3X3为例。

高斯滤波认为各个像素点距离核中心的距离不一样,导致颜色的贡献程度不一样,因此给不同的点不同的权重。取图像中的部分像素点

我们把这个矩阵看成f(x,y)函数,下标为参数,像素点的值为函数结果,那么要求f(1,1)处的卷积运算结果,因为现在是二维函数了,因此对应的卷积表达式为:

对应到本例u=1, v=1

 

我们来构建g(1-x, 1-y)函数,暂定为3X3的矩阵,我们知道目标点f(1,1)要对应g(0,0),如果将g(0,0)设置在核的中心,那么根据下标展开之后我们就可以构建出g

 有了g函数之后,就可以执行运算了,注意运算的时候 f 和 g 的参数要符合卷积公式,即

其实这样就够了,但是便于理解和说明,我们将矩阵先沿着X轴翻转,再沿Y轴翻转,中心点在 g(0,0) 处,得到

虽然翻转了,但是运算公式没有变化,只是从观察上更好一一对应,也更方便计算。 

注意,将卷积核盖在目标像素点上面,将对应的像素点相乘相加,这种运算应该叫互相关运算(cross-correlation),通过将g进行翻转,使得卷积运算变成了互相关运算,将翻转之后的矩阵称为卷积核,并且在设计卷积核的时候就是参照互相关运算来的,而不会去关心真正的卷积运算。因此在实际应用中通常是直接去构建这个最终的矩阵。

在后续的计算中,将结果赋值给f(1,1),然后向右平移一格,达到边界后向下平移一格继续从左边开始卷积。整个过程中最外一层无法被算到,解决的方法是将原图像向外扩大一圈像素点并设置为0。通过设置不同的卷积核来达到不同的结果,这是机器视觉的基础操作。

2 pytorch中的卷积

CNN是深度学习的重中之重,而conv1Dconv2D,和conv3D又是CNN的核心,所以理解conv的工作原理就变得尤为重要,卷积中几个核心概念如下:

  • 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加。

  • 卷积核:又称为滤波器,过滤器,可认为是某种特征。

  • 卷积过程类似于用一个模版去图像上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取。

  • 卷积维度:一般情况下 ,卷积核在几个维度上滑动就是几维卷积。

2.1 一维卷积nn.Conv1d

一维卷积nn.Conv1d主要用于文本数据,只对宽度进行卷积,对高度不卷积。通常,输入大小为word_embedding_dim * max_length,其中,word_embedding_dim为词向量的维度,max_length为句子的最大长度。卷积核窗口在句子长度的方向上滑动,进行卷积操作。

2.1.1 函数原型

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;在文本应用中,即为词向量的维度;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;卷积核的第二个维度由in_channels决定,所以实际上卷积核的大小为kernel_size * in_channels

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;对输入的每一条边,补充0的层数;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.1.2 原理示意图

1D输入上的1D卷积示意图:

2D输入上的1D卷积示意图 

 

 

说明:

  •     对于一个卷积核(kernel),不管是1D输入还是2D输入,其输出都是1D矩阵;

  •     卷积核的高度必须与输入特征图的高度相匹配;即 input = [W,L], filter = [k,L] output = [W];

  •     对于多个卷积核的情况,其经过Conv1D之后,输出堆叠为2D矩阵,如果卷积核的个数为N,则输出的尺寸为 1D x N

  •     1D卷积常用在时间序列数据的建模上。

尺寸计算:

注意:

  • 其中, N表示卷积核个数; C_{in}表示输入通道数; L_{in}表示输入的长度;

  • C_{in}必须与 Conv1D 中设置的 in_channels (int) 相等。

  • C_{out}​ = Conv1D 中设置的 out_channels。

2.1.3 示例代码

输入:批大小为32,句子的最大长度为35,词向量维度为256
目标:句子分类,共2类

import torch
import torch.nn as nn

conv1 = nn.Conv1d(in_channels=256, out_channels=100, kernel_size=2)
input = torch.randn(32, 35, 256)
input = input.permute(0, 2, 1)
output = conv1(input)
print(output.shape)

假设window_size = [3, 4, 5, 6],即共有四个卷积核,基于上述代码,具体计算过程如下:

  1. 原始输入大小为(32, 35, 256),经过permute(0, 2, 1)操作后,输入的大小变为(32, 256, 35)
  2. 使用1个卷积核进行卷积,可得到1个大小为32 x 100 x 1的输出,共4个卷积核,故共有4个大小为32 x 100 x 1的输出;
  3. 将上一步得到的4个结果在dim = 1上进行拼接,输出大小为32 x 400 x 1
  4. view操作后,输出大小变为32 x 400
  5. 全连接,最终输出大小为32 x 2,即分别预测为2类的概率大小。

2.2 二维卷积Conv2D

二维卷积nn.Conv2d通常用于图像数据,对宽度和高度都进行卷积。

2.2.1 函数原型

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.2.2 原理示意图

输出计算:

2.2.3 示例代码

假设现有大小为32 x 32的图片样本,输入样本的channels为1,该图片可能属于10个类中的某一类。CNN框架定义如下:

class CNN(nn.Module):
    def __init__(self):
        nn.Model.__init__(self)
 
        self.conv1 = nn.Conv2d(1, 6, 5)  # 输入通道数为1,输出通道数为6
        self.conv2 = nn.Conv2d(6, 16, 5)  # 输入通道数为6,输出通道数为16
        self.fc1 = nn.Linear(5 * 5 * 16, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 输入x -> conv1 -> relu -> 2x2窗口的最大池化
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        # 输入x -> conv2 -> relu -> 2x2窗口的最大池化
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        # view函数将张量x变形成一维向量形式,总特征数不变,为全连接层做准备
        x = x.view(x.size()[0], -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

网络整体结构:[conv + relu + pooling] * 2 + FC * 3
原始输入样本的大小:32 x 32 x 1

  • 第一次卷积:使用6个大小为5 x 5的卷积核,故卷积核的规模为(5 x 5) x 6;卷积操作的stride参数默认值为1 x 1,32 - 5 + 1 = 28,并且使用ReLU对第一次卷积后的结果进行非线性处理,输出大小为28 x 28 x 6

  • 第一次卷积后池化:kernel_size2 x 2,输出大小变为14 x 14 x 6

  • 第二次卷积:使用16个卷积核,故卷积核的规模为(5 x 5 x 6) x 16;使用ReLU对第二次卷积后的结果进行非线性处理,14 - 5 + 1 = 10,故输出大小为10 x 10 x 16

  • 第二次卷积后池化:kernel_size同样为2 x 2,输出大小变为5 x 5 x 16

  • 第一次全连接:将上一步得到的结果铺平成一维向量形式,5 x 5 x 16 = 400,即输入大小为400 x 1,W大小为120 x 400,输出大小为120 x 1

  • 第二次全连接,W大小为84 x 120,输入大小为120 x 1,输出大小为84 x 1

  • 第三次全连接:W大小为10 x 84,输入大小为84 x 1,输出大小为10 x 1,即分别预测为10类的概率值。

2.3 三维卷积Conv3D

3D卷积常用于医学影像图像分割以及视频中的动作检测

2.3.1 函数原型

class torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数说明:

  • in_channels (int) – 输入通道数;

  • out_channels (int) – :输出通道数,等价于卷积核个数;

  • kernel_size (int or tuple) – 卷积核大小;

  • stride (int or tuple, optional) – 卷积步长,默认为 1;

  • padding (int or tuple, optional) – Zero-padding,默认为 0;

  • padding_mode (string, optional) – ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’;

  • dilation (int or tuple, optional) – 空洞卷积尺寸,默认为 1;

  • groups (int, optional) – 分组卷积设置,Number of blocked connections from input channels to output channels. Default: 1;

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True。

2.3.2 原理示意图

动态执行示意图:

输出计算:

2.4 空洞卷积

空洞卷积诞生于图像分割领域,比如FCN网络,首先像传统的CNN一样,先卷积后池化,经过池化层之后,图像尺寸降低,感受野增大,但是因为图像分割需要实现像素级的输出,所以要将经过池化之后的较小的特征图通过转置卷积(反卷积)降采样到与原始图像相同的尺寸。之前的池化操作使得原特征图中的每个像素都具有较大的感受野,因此FCN中的两个关键:一是通过池化层增大感受野,二是通过转置卷积增大图像尺寸。在先减小后增大的过程中,肯定会丢失信息,那么能否不同池化层也可以使得网络具有较大的感受野呢?空洞卷积应运而生。

原理示意图如下:

  • (a)图 对应3x3的1-dilated conv,和普通的卷积操作一样;

  • (b)图 对应3x3的2-dilated conv,实际的卷积 kernel size 还是 3x3,但是空洞为1,也就是对于一个7x7的图像patch,只有9个红色的点和3x3的kernel发生卷积操作,其余的点略过。也可以理解为kernel的size为7x7,但是只有图中的9个点的权重不为0,其余都为0。 可以看到虽然kernel size只有3x3,但是这个卷积的感受野已经增大到了7x7(如果考虑到这个2-dilated conv的前一层是一个1-dilated conv的话,那么每个红点就是1-dilated的卷积输出,所以感受野为3x3,所以1-dilated和2-dilated合起来就能达到7x7的conv);

  • (c)图 是4-dilated conv操作,同理跟在两个1-dilated和2-dilated conv的后面,能达到15x15的感受野。对比传统的conv操作,3层3x3的卷积加起来,stride为1的话,只能达到(kernel-1)*layer+1=7的感受野,也就是和层数layer成线性关系,而dilated conv的感受野是指数级的增长。

  • dilated的好处是不做pooling损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。在图像需要全局信息或者语音文本需要较长的sequence信息依赖的问题中,都能很好的应用dilated conv,比如图像分割[3]、语音合成WaveNet[2]、机器翻译ByteNet[1]中。

2.5 转置卷积

卷积是使输出大小变小的过程。 因此,而反卷积(deconvolution)可以进行向上采样以增大输出大小。但是,反卷积并代表卷积的逆过程。因此它也被称为向上卷积或转置卷积(transposed convolution)。 当使用分数步幅时,也称为分数步幅卷积(fractional stride convolution)。

正常卷积:

    假设图像尺寸为 4×4,卷积核为 3×3,padding=0,stride=1;
    图像:I_{16*1};卷积核:K_{4*16};输出: O_{4*1}=K_{4*16}*I_{16*1}

转置卷积:

    假设图像尺寸为 2×2 ,卷积核为 3×3,padding=0,stride=1;
    图像:I_{4*1};卷积核: K_{16*4};输出: O_{16*1}=K_{16*4}*I_{4*1}

ConvTranspose1d

class torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

输出计算:

ConvTranspose2d

class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int
    ) – Number of channels in the input image

  • out_channels (int
    ) – Number of channels produced by the convolution

  • kernel_size  (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

 

 输出计算:

ConvTranspose3d

class torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
  • in_channels (int) – Number of channels in the input image

  • out_channels (int) – Number of channels produced by the convolution

  • kernel_size  (int or tuple) – Size of the convolving kernel

  • stride (int or tuple, optional) – Stride of the convolution. Default: 1

  • padding (int or tuple, optional) – dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional) – Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

  • dilation (int or tuple, optional) – Spacing between kernel elements. Default: 1

 

输出计算:

2.6 深度可分离卷积

MobileNet中大量使用的了深度可分离卷积(Depth-wise Separable Convolutions),主要起到降低参数量,增加非线性,跨通道信息融合的作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/208115.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TCP简介及特性

1. TCP协议简介 TCP是Transmission Control Protocol的简称,中文名是传输控制协议。它是一种面向连接的、可靠的、基于IP的传输层协议。两个TCP应用之间在传输数据的之前必须建立一个TCP连接,TCP采用数据流的形式在网络中传输数据。TCP为了保证报文传输的…

Python+Requests模拟发送post请求

模拟发送post请求 发送post请求的基础知识dumps和loads 代码示例: # 发送post请求 import requests,json # 发送post请求的基础知识dumps和loads str_dict {name:xiaoming,age:20,sex:男} print(type(str_dict)) str1 json.dumps(str_dict) # 1,json.dumps 是把…

windows判断端口是否在使用的bat脚本

脚本 REM 查询端口是否占用 netstat -ano|findstr 3306 >nul &&echo y >1.log ||echo n >1.log REM 读取文本内容赋值给变量 set /P resu<1.log if %resu% y (echo port in use ) else (echo port not in use ) mysql服务不运行的时候检测效果 mysql服…

【Excel】WPS快速按某列查重数据

查重值 excel列几条数据肉眼可见&#xff0c;如何千万级别数据查验呢&#xff1f;平时很少用&#xff0c;记录一下: 先框选列要验证的数据&#xff0c;然后&#xff1a;开始->条件格式->突出显示单元格规则->重复值 效果

成都理工大学校园《我想假如在这里度过大学生活》火了

近日&#xff0c;网上一篇关于成都理工大学校园环境的《我想假如在这里度过大学生活》火了。文章中的提到的大学环境优美&#xff0c;诗意盎然。一则则假如&#xff0c;带我们领略了校园风光&#xff0c;同时也感受到了大学时代的美好。 美丽的图书馆、阳光明媚的操场&#xff…

HNU-计算机网络-讨论课2

第二次 有关网络智能、安全以及未来网络的讨论 一、必选问题&#xff08;每组自由选择N个&#xff0c;保证组内每人负责1个&#xff09; 网络的发展促进信息的传播&#xff0c;极大提高了人类的感知能力&#xff0c;整个世界都被纳入人类的感知范围。但人们对信息系统以及数据…

Jenkins UI 自动化持续化集成测试

一&#xff1a;安装jenkins 环境 在官网下载msi 直接安装即可 二&#xff1a;设置全局变量 设置allure 路径 三&#xff1a;创建项目 1、创建自由风格项目 2、如果项目在本地&#xff0c;且本地服务器是windows &#xff0c;找到Jenkins安装根目录&#xff0c;寻找config…

Serilog .net下的新兴的日志框架

Serilog .net下的新兴的日志框架 1.Serilog简介 Serilog 是针对 .NET 应用程序的流行日志记录框架。它以其灵活性、易用性和可扩展性而闻名。借助 Serilog&#xff0c;开发人员可以轻松记录应用程序中的事件、错误和消息。它支持结构化日志记录&#xff0c;能够以结构化格式存…

B.牛牛排队伍——模拟双链表

当前位置: 首页 > news >正文 B.牛牛排队伍——模拟双链表 news 2023/12/1 15:14:37 分析 题目其实很简单,就是双链表的增删查,但是刚开始,直接vis标记删除元素,查找一个位置的前一个用的while不断向前找,但是TLE;毕竟O(n*k)的复杂度,一开始没有考虑时间复杂度…

【spring】bean的后处理器

目录 一、作用二、常见的bean后处理器2.1 AutowiredAnnotationBeanPostProcessor2.1.1 说明2.1.2 代码示例2.1.3 截图示例 2.2 CommonAnnotationBeanPostProcessor2.2.1 说明2.2.2 代码示例2.2.3 截图示例 2.3 ConfigurationPropertiesBindingPostProcessor2.3.1 说明2.3.2 代码…

uniapp uni-popup组件在微信小程序中滚动穿透问题

起因 在微信小程序中使用uni-popup组件时&#xff0c;出现滚动穿透&#xff0c;并且uni-popup内部内容不会滚动问题。 解决 滚动穿透 查阅官方文档&#xff0c;发现滚动穿透是由于平台差异性造成的&#xff0c;具体解决可以参照文档禁止滚动穿透 <template><page-…

【动手学深度学习】(七)丢弃法

文章目录 一、理论知识二、代码实现2.1从零开始实现Dropout 【相关总结】np.random.uniform(low&#xff0c;high&#xff0c;size)astypetorch.rand() 一、理论知识 1.动机 一个好的模型需要对输入数据的扰动鲁棒 使用有噪音的数据等价于Tikhonov正则丢弃法&#xff1a;在层…

PVE系列-LVM安装MacOS的各个版本

PVE系列-LVM安装MacOS的各个版本 环境配置大概过程&#xff1a;详细步骤&#xff1a;1.建立安装环境和下载安装工具2. 重启后&#xff0c;执行osx-setup配置虚拟机3. 安装到硬盘&#xff0c;4.设定引导盘&#xff0c;以方便自动开机启动5.打开屏幕共享和系统VNC最后的结果 引子…

软件工程 - 第8章 面向对象建模 - 2 静态建模

静态建模&#xff08;类和对象建模&#xff09; 类和对象模型的基本模型元素有类、对象以及它们之间的关系。系统中的类和对象模型描述了系统的静态结构&#xff0c;在UML中用类图和对象图来表示。 类图由系统中使用的类以及它们之间的关系组成。类之间的关系有关联、依赖、泛…

基于A*的网格地图最短路径问题求解

基于A*的网格地图最短路径问题求解 一、A*算法介绍、原理及步骤二、Dijkstra算法和A*的区别三、A*算法应用场景四、启发函数五、距离六、基于A*的网格地图最短路径问题求解实例分析完整代码 七、A*算法的改进思路 一、A*算法介绍、原理及步骤 A*搜索算法&#xff08;A star al…

Python 批量修改文件名

主要步骤 通过os.listdir查看该文件夹下所有的文件&#xff08;包括文件夹&#xff09;遍历所有文件&#xff0c;如果是文件夹则跳过&#xff0c;或指定跳过指定文件获取文件扩展名按照需求生成新的文件路径文件名进行重命名 代码示例 # -*- coding: utf-8 -*- import osdef…

二 使用GPIO的复用功能 利用USART 实现printf()

参考这篇&#xff1a; STM32串口通信详解 1. 关于USART USART ( universal synchronous / asynchronous receiver /transmitter) 是一种串行通讯协议 , 允许设备通过串行端口进行数据传输&#xff0c; USART 能够以同步或者异步的方式进行工作&#xff0c;在实际的运用中&…

局域网协议:以太网(Ethernet)详解

文章目录 Ethernet的组成以太网和 Wi-Fi以太网应用场景以太网的发展历程以太网数据链路层CSMA/CD (载波侦听多路访问/冲突检测)推荐阅读 以太网&#xff08;Ethernet&#xff09;是一种局域网&#xff08;LAN&#xff09;技术&#xff0c;用于在局域网范围内传输数据。它是最常…

算法与电子信息的来看看,打开你们的选题思路

算法和电子信息工程是两个非常广泛的领域&#xff0c;他们互相促进和补充。算法是指一系列用于解决特定问题的计算方法&#xff0c;其应用范围涵盖计算机科学、数学、物理等领域。而电子信息工程是一门研究用电子学、计算机技术和通讯技术等手段收集、传输、分析信息的学科。 在…

校招笔试-Windows开发工程师客观题合集解析

360公司-2019校招笔试-Windows开发工程师客观题合集 API无法实现进程间数据的相互传递是PostMessage 2.以下代码执行后&#xff0c;it的数据为&#xff08;异常&#xff09; std::list<int> temp; std::list<int>::iterator it temp.begin(); it --it; 3.API…