LeetCode105.从前序和中序遍历序列构造二叉树

 这道题看完题想了几分钟就想到大概的思路了,但是在写的时候有很多细节没注意出了很多问题,然后写了1个多小时,其实这道题挺简单的。

首先,最基本的知识,先序遍历是根左右,中序遍历是左根右,那么我们一眼可以知道:根节点是先序遍历的第一个节点,然后又可以在中序遍历中找到这个根节点(树中每个val都不相等),中序遍历中根节点的左变是左子树,根节点的右遍是右子树。

那么这个题目应该怎么解呢?首先,对于树的题目要么递归要么用队列或栈,我选择用递归。根据上面发现的几个点,我想到了递归函数:

public TreeNode dfs(int[] preorder, int[] inorder)

通过这两个遍历序列我们可以创建出根节点,然后我们在从preorder和inorder中找出来左子树的leftPreorder和leftInorder以及右子树的rightPreorder和rightInorder,然后利用递归

root.left=dfs(leftPreorder, leftInorder);
root.right = dfs(rightPreorder, rightInorder);

大体上的思路就是这样,那么我们如何找出左右子树的前序和中序的遍历序列呢?

首先中序遍历是非常简单的,中序遍历是左根右的顺序,它对于每颗树都是根左右的顺序,所以‘左’就是左子树的中序遍历结果,所以我们在inorder中根节点左边就是leftInorder,根节点右边就是rightInorder。

前序遍历也不难,前序遍历是根左右,preorder第0个数是根节点,后面是左和右,而我们在中序遍历中已经知道了左子树的长度leftLength和右子树的长度rightLength,所有从第1个数往后数leftLength就是左子树的前序遍历leftPreorder,剩下的就是右子树的前序遍历rightPreorder。

然后需要注意的就是,递归的结束,如果左子树的长度小于0就不用递归的创建左子树了,右子树同理,最后返回root。以下是我的代码:

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if(preorder.length == 0){
            return null;
        }else{
            return dfs(preorder, inorder);
        }
    }
    public TreeNode dfs(int[] preorder, int[] inorder){
    TreeNode root = new TreeNode(preorder[0]);

    int leftInorderIndex = 0;
    int rightInorderIndex = 0;
    int leftPreorderIndex = 0;
    int rightPreorderIndex = 0;
    //在中序遍历中找到根节点
    for(int i=0;i<inorder.length;i++){
        if(inorder[i] == root.val){
            leftInorderIndex = i-1;
            rightInorderIndex = i+1;
            break;
        }
    }
    //找到左子树长度和右子树长度
    int leftLength = leftInorderIndex+1;
    int rightLength = inorder.length - rightInorderIndex;

    if(leftLength > 0){
        //创建leftInorder
        int[] leftInorder = new int[leftLength];
        for(int i=0;i<leftInorder.length;i++){
            leftInorder[i] = inorder[i];
        }
        //创建leftPreorder
        int[] leftPreorder = new int[leftLength];
        int index =1;
        for(int i=0;i<leftPreorder.length;i++){
          leftPreorder[i] = preorder[index];
          index++;
        }
        //递归出根节点的左子树
      root.left = dfs(leftPreorder, leftInorder);
        
    }
   
    if(rightLength > 0){
        //创建出rightInorder
        rightPreorderIndex = leftLength+1;
        int[] rightInorder = new int[rightLength];
        int index0= rightInorderIndex;
        for(int i=0;i<rightInorder.length;i++){
           rightInorder[i] = inorder[index0];
           index0++;
        }
        //创建出rightPreorder
        int[] rightPreorder = new int[rightLength];
       int index1 = rightPreorderIndex;
       for(int i=0;i<rightPreorder.length;i++){
          rightPreorder[i] = preorder[index1];
          index1++;
      }
      //递归出根节点的右子树
       root.right = dfs(rightPreorder, rightInorder);
    }
    return root;
    }
}

看看官方题解做法:

题解的方法一用的也是递归,但是他用了一个HashMap来快速定位根节点,还有就是他没有去创建左右子树的前中遍历序列数组,他直接传前序,中序遍历在inorder中的起始下标和终止下标,因为他们在数组中是连续的,这样全局只需要用这个最大的inorder和preorder就可以,不用花费时间和空间去创建数组,以下是题解方法一代码:

class Solution {
    private Map<Integer, Integer> indexMap;

    public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
        if (preorder_left > preorder_right) {
            return null;
        }

        // 前序遍历中的第一个节点就是根节点
        int preorder_root = preorder_left;
        // 在中序遍历中定位根节点
        int inorder_root = indexMap.get(preorder[preorder_root]);
        
        // 先把根节点建立出来
        TreeNode root = new TreeNode(preorder[preorder_root]);
        // 得到左子树中的节点数目
        int size_left_subtree = inorder_root - inorder_left;
        // 递归地构造左子树,并连接到根节点
        // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
        root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
        // 递归地构造右子树,并连接到根节点
        // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
        root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
        return root;
    }

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int n = preorder.length;
        // 构造哈希映射,帮助我们快速定位根节点
        indexMap = new HashMap<Integer, Integer>();
        for (int i = 0; i < n; i++) {
            indexMap.put(inorder[i], i);
        }
        return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
    }
}

题解的第二种方法是迭代,

class Solution {
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        if (preorder == null || preorder.length == 0) {
            return null;
        }
        TreeNode root = new TreeNode(preorder[0]);
        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        stack.push(root);
        int inorderIndex = 0;
        for (int i = 1; i < preorder.length; i++) {
            int preorderVal = preorder[i];
            TreeNode node = stack.peek();
            if (node.val != inorder[inorderIndex]) {
                node.left = new TreeNode(preorderVal);
                stack.push(node.left);
            } else {
                while (!stack.isEmpty() && stack.peek().val == inorder[inorderIndex]) {
                    node = stack.pop();
                    inorderIndex++;
                }
                node.right = new TreeNode(preorderVal);
                stack.push(node.right);
            }
        }
        return root;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/207994.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

重磅!GPT-4 API,全面开放使用!

7月7日&#xff0c;OpenAI在官网宣布&#xff0c;GPT-4 API全面开放使用。现所有付费API用户都可直接访问8K上下文的GPT-4&#xff0c;无需任何等待。 预计到7月底之前&#xff0c;OpenAI会向全新的开发人员开放GPT-4 API使用权限。&#xff08;API详细使用说明地址&#xff1…

【AB平台数据建设】从实验平台到数据管道

文章目录 前言1.从AB实验平台聊起(1)AB平台在业务中的发挥那些作用(2)AB平台进行实验工作流介绍 2.实验平台底层数据管道最小MVP解构(1)数据管道数据从哪里来&#xff1f;(2)数据管道的输出数据有哪些&#xff1f; 小结 前言 AB实验平台是一种通过小范围放量&#xff0c;测试不…

安装两个WIN10/WIN11系统到两个盘中,第二个系统依赖原系统盘引导的问题

前段时间折腾装一个双系统&#xff0c;主要两个方面考虑&#xff1a; 1. 原来的系统又许多软件&#xff0c;想着先保留&#xff1b; 2. 系统想安装到一个固态硬盘中&#xff1b; 在安装的过程中遇到了一些问题&#xff0c;这里记录分享一下。 问题1&#xff0c;运行系统自动安装…

深入 C 语言和程序运行原理 实战项目代码在CentOS 7上编译

cat /etc/redhat-release看到操作系统的版本是CentOS Linux release 7.6.1810 (Core)&#xff0c;uname -r可以看到内核版本是3.10.0-957.21.3.el7.x86_64。 安装gtest 参考博客《使用gtest和lcov测试代码覆盖率》 wget https://github.com/google/googletest/archive/refs/…

Android NDK项目创建的时候C++版本选择都有什么区别

Android ndk项目在创建的时候有C版本选择有4个选项&#xff0c;分别是Toolchain default&#xff0c; C11&#xff0c;C14&#xff0c;C17。 C是一种广泛使用的编程语言&#xff0c;它不断地发展和更新&#xff0c;以适应不同的需求和场景。C的语言标准是由国际标准化组织&…

2.qml 3D-View3D类学习

本章我们来学习View3D类。 View3D是用来渲染3D场景并显示在2D平面的类&#xff0c;并且该类可以放在QML2D下继承于Item子类的任何场景中&#xff0c;比如将View3D放在Rectangle中: Rectangle {width: 200 height: 200color: "red"View3D { anchors.fill: parent…

九章量子计算机:引领量子计算的新篇章

九章量子计算机:引领量子计算的新篇章 一、引言 随着科技的飞速发展,量子计算已成为全球科研领域的前沿议题。九章量子计算机作为中国自主研发的量子计算机,具有划时代的意义。本文将深入探讨九章量子计算机的原理、技术特点、应用前景等方面,带领读者领略量子计算的魅力…

什么是OV SSL证书?

OV SSL证书是组织验证SSL证书的缩写&#xff0c;是三个SSL验证级别之一的名称。 OV是指实名类型的SSL证书&#xff0c;这个实名其实只要证明发布者身份就可以签发&#xff0c;无论是个人还是企业都可以进行申请。 SSL证书大家都知道就是用于网站地址的http改成https加密协议的…

gromacs学习及使用(1)

1.Gromacs的使用 2.Gromacs 的第一步_能量最小化 3.分子动力学模拟Gromacs一般使用步骤&#xff08;空蛋白&#xff09; 4.GROMACS优化(没看懂) 5.GROMACS快速入门&#xff08;有好东西&#xff09; GROMACS中文教程 gmx editconf -f xxx -o xxx6.GROMACS运行参数之em.mdp文…

Burp Suite序列之目录扫描

如果你是一名渗透测试爱好者或者专业人士&#xff0c;你一定知道目录扫描是渗透测试中非常重要的一步。通过目录扫描&#xff0c;我们可以发现网站的敏感信息&#xff0c;隐藏的功能&#xff0c;甚至是后台入口。目录扫描可以帮助我们更好地了解目标网站的结构和漏洞。 但是&a…

四大视角看EMC设计:滤波、接地、屏蔽、PCB布局

电磁干扰的主要方式是传导干扰、辐射干扰、共阻抗耦合和感应耦合。对这几种途径产生的干扰我们应采用的相应对策&#xff1a;传导采取滤波&#xff0c;辐射干扰采用屏蔽和接地等措施&#xff0c;就能够大大提高产品的抵抗电磁干扰的能力&#xff0c;也可以有效的降低对外界的电…

Shell循环:for(三)

示例&#xff1a;使用for实现批量主机root密码的修改 一、前提 已完成密钥登录配置&#xff08;ssh-keygen&#xff09;定义主机地址列表并了解远程修改密码的方法 [rootlocalhost ~]# ssh-keygen #设置免密登录[rootlocalhost ~]# ssh-copy-id 192.168.151.151 二、演示…

【趣味JavaScript】一文让你读懂JavaScript原型对象与原型链的继承,探秘属性的查找机制! 《重置版》

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享博主 &#x1f40b; 希望大家多多支持一下, 我们一起学习和进步&#xff01;&#x1f604; &#x1f3c5; 如果文章对你有帮助的话&#xff0c;欢迎评论 &#x1f4ac;点赞&a…

【Linux】第二十三站:缓冲区

文章目录 一、一些奇怪的现象二、用户级缓冲区三、用户级缓冲区刷新问题四、一些其他问题1.缓冲区刷新的时机2.为什么要有这个缓冲区3.这个缓冲区在哪里&#xff1f;4.这个FILE对象属于用户呢&#xff1f;还是操作系统呢&#xff1f;这个缓冲区&#xff0c;是不是用户级的缓冲区…

STM32 自定义UART数据格式(串口通信点亮LED实验)

起始位&#xff1a;0xaa告诉机器我们要开始传输数据了。 校验位&#xff1a;等于前几项数据位的相加。 结束位&#xff1a;结束传输。 自定义UART数据格式&#xff1a; 1》CPU与CPU之间 2》外设与CPU之间 这里举例&#xff0c;利用串口调试助手发送一串数据&#xff0c;…

Java数据结构之《循环队列》题目

一、前言&#xff1a; 这是怀化学院的&#xff1a;Java数据结构中的一道难度中等的一道编程题(此方法为博主自己研究&#xff0c;问题基本解决&#xff0c;若有bug欢迎下方评论提出意见&#xff0c;我会第一时间改进代码&#xff0c;谢谢&#xff01;) 后面其他编程题只要我写完…

11.26电梯控制器设计分析

项目三 电梯控制器设计&#xff08;*****&#xff09; 设计一个多楼层的电梯控制器系统&#xff0c;并能在开发板上模拟电梯运行状态。可以利用按键作为呼叫按键&#xff0c;数码管显示电梯运行时电梯所在楼层&#xff0c;led灯显示楼层叫梯状态。 就是初始默认在1楼&#xff0…

【MySQL】MySQL安装 环境初始化

MySQL安装 MYSQL官网 安装完成后,傻瓜下一步即可 配置一下环境变量即可 (1) 初始化MySQL, 管理员身份运行 mysqld --initialize-insecure(2) 注册 mysqld mysqld -install# 如果记录以前的版本执行下面指令 mysqld -remove(3) 启动MySQL服务 // 启动mysql服务 net start …

Nginx配置文件全解析【深度剖析细节】

文章目录 &#x1f4a5; 简介&#x1f4ab; 基本结构&#x1f349; 事件处理器&#x1f96d; 配置分析&#x1f34f; 配置示例 &#x1f349; HTTP服务器&#x1f96d; 配置分析&#x1f34f; 配置示例 &#x1f349; 虚拟主机 &#x1f34a; 优化&#x1f354; 总结 &#x1f…

卡码网15 .链表的基本操作III

链表的基础操作III 时间限制&#xff1a;1.000S 空间限制&#xff1a;128MB 题目描述 请编写一个程序&#xff0c;实现以下链表操作&#xff1a;构建一个单向链表&#xff0c;链表中包含一组整数数据。 1. 实现在链表的第 n 个位置插入一个元素&#xff0c;输出整个链表的…