深度学习手势检测与识别算法 - opencv python 计算机竞赛

文章目录

  • 0 前言
  • 1 实现效果
  • 2 技术原理
    • 2.1 手部检测
      • 2.1.1 基于肤色空间的手势检测方法
      • 2.1.2 基于运动的手势检测方法
      • 2.1.3 基于边缘的手势检测方法
      • 2.1.4 基于模板的手势检测方法
      • 2.1.5 基于机器学习的手势检测方法
    • 3 手部识别
      • 3.1 SSD网络
      • 3.2 数据集
      • 3.3 最终改进的网络结构
  • 4 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像识别手势检测识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现效果

废话不多说,先看看学长实现的效果吧
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2 技术原理

2.1 手部检测

主流的手势分割方法主要分为静态手势分割和动态手势分割两大类方法。

  • 静态手势分割方法: 单张图片利用手和背景的差异进行分割,

  • 动态手势分割方法: 利用了视频帧序列的信息来分割。

2.1.1 基于肤色空间的手势检测方法

肤色是手和其他背景最明显的区分特征,手的颜色范围较统一并且有聚类性,基于肤色的分割方法还有处理速度快,对旋转、局部遮挡、姿势变换具有不变性,因此利用不同的颜色空间来进行手势分割是现在最常用的方法。

肤色分割的方法主要有以下几种:基于参数、非参数的显式肤色聚类方法。参数模型使用高斯颜色分布,非参数模型则是从训练数据中获得肤色直方图来对肤色区间进行估计。肤色聚类显式地在某个特定的颜色空间中定义了肤色的边界,广义上看是一种静态的肤色滤波器,如Khan根据检测到的脸部提出了一种自适应的肤色模型。

肤色是一种低级的特征,对计算的消耗很少,感知上均匀的颜色空间如CIELAB,CIELUV等已经被用于进行肤色检测。正交的颜色空间如,YCbCr,YCgCr,YIQ,YUV等也被用与肤色分割,如Julilian等使用YCrCb颜色空间,利用其中的CrCb分量来建立高斯模型进行分割。使用肤色分割的问题是误检率非常高,所以需要通过颜色校正,图像归一化等操作来降低外界的干扰,提高分割的准确率。

基于YCrCb颜色空间Cr, Cb范围筛选法手部检测,实现代码如下:

# 肤色检测之二: YCrCb中 140<=Cr<=175 100<=Cb<=120
img = cv2.imread(imname, cv2.IMREAD_COLOR)
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb) # 把图像转换到YUV色域
(y, cr, cb) = cv2.split(ycrcb) # 图像分割, 分别获取y, cr, br通道分量图像

skin2 = np.zeros(cr.shape, dtype=np.uint8) # 根据源图像的大小创建一个全0的矩阵,用于保存图像数据
(x, y) = cr.shape # 获取源图像数据的长和宽

# 遍历图像, 判断Cr和Br通道的数值, 如果在指定范围中, 则置把新图像的点设为255,否则设为0
for i in  range(0, x): 
	for j in  range(0, y):
		if (cr[i][j] >  140) and (cr[i][j] <  175) and (cb[i][j] >  100) and (cb[i][j] <  120):
			skin2[i][j] =  255
		else:
			skin2[i][j] =  0

cv2.imshow(imname, img)
cv2.imshow(imname +  " Skin2 Cr+Cb", skin2)

检测效果:

在这里插入图片描述
在这里插入图片描述

2.1.2 基于运动的手势检测方法

基于运动的手势分割方法将运动的前景和静止的背景分割开,主要有背景差分法、帧间差分法、光流法等。

帧间差分选取视频流中前后相邻的帧进行差分,设定一定的阈值来区分前景和后景,从而提取目标物体。帧差法原理简单,计算方便且迅速,但是当前后景颜色相同时检测目标会不完整,静止目标则无法检测。

背景差分需要建立背景图,利用当前帧和背景图做差分,从而分离出前后景。背景差分在进行目标检测中使用较多。有基于单高斯模型,双高斯模型的背景差分,核密度估计法等。景差分能很好的提取完整的目标,但是受环境变化的影响比较大,因此需要建立稳定可靠的背景模型和有效的背景更新方法。

1, 读取摄像头
2, 背景减除
fgbg1 = cv.createBackgroundSubtractorMOG2(detectShadows=True)
fgbg2 = cv.createBackgroundSubtractorKNN(detectShadows=True)
# fgmask = fgbg1.apply(frame)
fgmask = fgbg2.apply(frame) # 两种方法
3, 将没帧图像转化为灰度图像 在高斯去噪 最后图像二值化
gray = cv.cvtColor(res, cv.COLOR_BGR2GRAY)
blur = cv.GaussianBlur(gray, (11, 11), 0)
ret, binary = cv.threshold(blur, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
4, 选取手部的 ROI 区域 绘制轮廓
gesture = dst[50:600, 400:700]
contours, heriachy = cv.findContours(gesture, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE) # 获取轮廓本身
for i, contour in enumerate(contours): # 获取轮廓
cv.drawContours(frame, contours, i, (0, 0, 255), -1) # 绘制轮廓
print(i)

在这里插入图片描述

2.1.3 基于边缘的手势检测方法

基于边缘的手势分割方法利用边缘检测算子在图像中计算出图像的轮廓,常用来进行边缘检测的一阶算子有(Roberts算子,Prewitt算子,Sobel算子,Canny算子等),二阶算子则有(Marr-
Hildreth算子,Laplacian算子等),这些算子在图像中找到手的边缘。但是边缘检测对噪声比较敏感,因此精确度往往不高。

边缘检测代码示例:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import scipy.signal as signal     # 导入sicpy的signal模块

# Laplace算子
suanzi1 = np.array([[0, 1, 0],  
                    [1,-4, 1],
                    [0, 1, 0]])

# Laplace扩展算子
suanzi2 = np.array([[1, 1, 1],
                    [1,-8, 1],
                    [1, 1, 1]])

# 打开图像并转化成灰度图像
image = Image.open("pika.jpg").convert("L")
image_array = np.array(image)

# 利用signal的convolve计算卷积
image_suanzi1 = signal.convolve2d(image_array,suanzi1,mode="same")
image_suanzi2 = signal.convolve2d(image_array,suanzi2,mode="same")

# 将卷积结果转化成0~255
image_suanzi1 = (image_suanzi1/float(image_suanzi1.max()))*255
image_suanzi2 = (image_suanzi2/float(image_suanzi2.max()))*255

# 为了使看清边缘检测结果,将大于灰度平均值的灰度变成255(白色)
image_suanzi1[image_suanzi1>image_suanzi1.mean()] = 255
image_suanzi2[image_suanzi2>image_suanzi2.mean()] = 255

# 显示图像
plt.subplot(2,1,1)
plt.imshow(image_array,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,3)
plt.imshow(image_suanzi1,cmap=cm.gray)
plt.axis("off")
plt.subplot(2,2,4)
plt.imshow(image_suanzi2,cmap=cm.gray)
plt.axis("off")
plt.show()

2.1.4 基于模板的手势检测方法

基于模版的手势分割方法需要建立手势模版数据库,数据库记录了不同手势不同场景下的手势模版。计算某个图像块和数据库中各个手势的距离,然后使用滑动窗遍历整幅图像进行相同的计算,从而在图像正确的位置找到数据库中的最佳匹配。模版匹配对环境和噪声鲁棒,但是数据库需要涵盖各种手型、大小、位置、角度的手势,并且因为需要遍历整个图像进行相同的计算,实时性较差。

2.1.5 基于机器学习的手势检测方法

贝叶斯网络,聚类分析,高斯分类器等等也被用来做基于肤色的分割。随机森林是一种集成的分类器,易于训练并且准确率较高,被用在分割和手势识别上。建立肤色分类的模型,并且使用随机森林对像素进行分类,发现随机森林得到的分割结果比上述的方法都要准确.

3 手部识别

毫无疑问,深度学习做图像识别在准确度上拥有天然的优势,对手势的识别使用深度学习卷积网络算法效果是非常优秀的。

3.1 SSD网络

SSD网络是2016年提出的卷积神经网络,其在物体检测上取得了很好的效果。SSD网络和FCN网络一样,最终的预测结果利用了不同尺度的特征图信息,在不同尺度的特征图上进行检测,大的特征图可以检测小物体,小特征图检测大物体,使用金字塔结构的特征图,从而实现多尺度的检测。网络会对每个检测到物体的检测框进行打分,得到框中物体所属的类别,并且调整边框的比例和位置以适应对象的形状。

在这里插入图片描述

3.2 数据集

我们实验室自己采集的数据集:

数据集包含了48个手势视频,这些视频是由谷歌眼镜拍摄的,视频中以第一人称视角拍摄了室内室外的多人互动。数据集中包含4个类别的手势:自己的左右手,其他人的左右手。数据集中包含了高质量、像素级别标注的分割数据集和检测框标注数据集,视频中手不受到任何约束,包括了搭积木,下棋,猜谜等活动。

在这里插入图片描述

需要数据集的同学可以联系学长获取

3.3 最终改进的网络结构

在这里插入图片描述
在这里插入图片描述

最后整体实现效果还是不错的:
在这里插入图片描述

4 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/206972.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

揭秘各种编程语言在不同领域中的精彩表现

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容&#x1f4e2;文章总结&#x1f4e5;博主目标 &#x1f50a;博主介绍 &#x1f31f;我是廖志伟&#xff0c;一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作…

golang 函数选项模式

一 什么是函数选项模式 函数选项模式允许你使用接受零个或多个函数作为参数的可变构造函数来构建复杂结构。我们将这些函数称为选项&#xff0c;由此得名函数选项模式。 例子&#xff1a; 有业务实体Animal结构体&#xff0c;构造函数NewAnimal&#xff08;&#xff09;&…

【opencv】计算机视觉基础知识

目录 前言 1、什么是计算机视觉 2、图片处理基础操作 2.1 图片处理&#xff1a;读入图像 2.2 图片处理&#xff1a;显示图像 2.3 图片处理&#xff1a;图像保存 3、图像处理入门基础 3.1 图像成像原理介绍 3.2 图像分类 3.2.1 二值图像 3.2.2灰度图像 3.2.3彩色图像…

Unity DOTS《群体战斗弹幕游戏》核心技术分析之3D角色动画

最近DOTS发布了正式的版本, 我们来分享现在流行基于群体战斗的弹幕类游戏&#xff0c;实现的核心原理。今天给大家介绍大规模战斗群体3D角色的动画如何来实现。 DOTS 对角色动画支持的局限性 截止到Unity DOTS发布的版本1.0.16,目前还是无法很好的支持3D角色动画。在DOTS 的b…

iOS系统上待办事项提醒软件哪个好

在这个快节奏的生活中&#xff0c;各种待办事项充斥了我们的日常工作和生活&#xff0c;尤其对于像我这样的iPhone用户而言&#xff0c;一款能够在iOS系统上快速和准确记录和提醒待办事项的软件&#xff0c;显得至关重要。 正如前几天&#xff0c;我正沉浸在工作中的时突然被领…

采购流程的简要概述

外部采购流程 一般来讲&#xff0c;企业的采购业务一般是对外采购活动&#xff0c;一个比较典型采购业务循环通常包括&#xff1a;需求提报、货源确定和供应商选择、采购订单处理、采购订单状态跟踪监控、到厂收货、发票校验、付款。 以下对几个节点进行详细的解释&#xff…

亚信科技AntDB数据库完成中国信通院数据库迁移工具专项测试

近日&#xff0c;在中国信通院“可信数据库”数据库迁移工具专项测试中&#xff0c;湖南亚信安慧科技有限公司&#xff08;简称&#xff1a;亚信安慧科技&#xff09;数据库数据同步平台V2.1产品依据《数据库迁移工具能力要求》、结合亚信科技AntDB分布式关系型数据库产品&…

JavaScript添加快捷键、取消浏览器默认的快捷操作、js查看键盘按钮keycode值

document.addEventListener("keydown",function (event) {// 如果不知道按键对应的数字&#xff08;keyCode&#xff09;是多少可以弹出查看一下// alert(event.keyCode)if (event.ctrlKey && event.altKey && event.view["0"] null){if(…

苹果手机格式化后数据还能恢复吗?本文将解答您的疑惑!

手机已经成为我们生活中不可或缺的一部分。然而&#xff0c;有时候我们会因为一些原因对手机进行格式化&#xff0c;从而造成数据的丢失。那么&#xff0c;手机格式化后数据还能恢复吗&#xff1f;本文将为大家详细解答这一问题&#xff0c;感兴趣的小伙伴请接着往下看&#xf…

java 对象大小计算

说明&#xff1a; 对于64位机&#xff1a;一个对象由三部分组成 对象头(object header) mark word &#xff1a;64bitkclass pointer &#xff1a;32bit(默认使用指针压缩)&#xff0c;如果取消指针压缩( XX:-UseCompressedOops)&#xff0c;则占用64bit数组长度&#xff1a;数…

38 - MySQL中InnoDB的知识点

InnoDB 存储引擎作为我们最常用到的存储引擎之一&#xff0c;充分熟悉它的的实现和运行原理&#xff0c;有助于我们更好地创建和维护数据库表。 1、InnoDB 体系架构 InnoDB 主要包括了内存池、后台线程以及存储文件。内存池又是由多个内存块组成的&#xff0c;主要包括缓存磁…

WordPress(10)解决中文连接问题

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、修改的前后二、自定义结构讲明三、修改方法前言 提示:这里可以添加本文要记录的大概内容: 1.中文连接如:http://www.lplovemm.love/2023/11/12/测试 2.这种连接在提交sitemap收录的时…

R语言30分钟上手

文章目录 1. 环境&安装1.1. rstudio保存工作空间 2. 创建数据集2.1. 数据集概念2.2. 向量、矩阵2.3. 数据框2.3.1. 创建数据框2.3.2. 创建新变量2.3.3. 变量的重编码2.3.4. 列重命名2.3.5. 缺失值2.3.6. 日期值2.3.7. 数据框排序2.3.8. 数据框合并(合并沪深300和中证500收盘…

帆软的控件参数-笔记1

1.帆软的控件参数 变量可以通过模板->模板参数定义添加需要给变量赋值的控件&#xff0c;如下拉控件时&#xff0c;将控件名称命名为与模板参数同名帆软就会自行匹配。也可以不添加模板参数&#xff0c;直接给控件名称命名&#xff0c;该命名就是变量名&#xff0c;该变量名…

淘天集团筹建大模型团队;最懂程序员的AI搜索引擎;奇绩创坛2023秋季路演;OpenAI大佬这么搞定机器学习;金融业大模型应用报告 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; &#x1f440; 淘天集团正在筹建大模型团队&#xff0c;已开启招聘 据悉&#xff0c;淘天集团正在筹建大模型研究团队&#xff0c;并将主要围绕「搜广…

基于单片机的电子密码锁设计

1&#xff0e;设计任务 利用AT89C51单片机为核心控制元件,设计一个简易的电子密码锁&#xff0c;可设置四位密码&#xff0c;输入错误三次&#xff0c;报警灯亮起&#xff08;红灯亮起&#xff09;&#xff0c;输入正确&#xff0c;绿灯闪烁三次。可通过LCD显示屏查看密码&…

ResizeObserver loop limit exceeded报错解决方案

前言&#xff1a; 控制台没有报错&#xff0c;但是开发Vue项目过程中一直报ResizeObserver loop limit exceeded 错&#xff0c;找到以下解决方式。在main.js文件中重写 ResizeObserver 方法。 main.js文件 &#xff08;完整版&#xff09; import { createApp } from "v…

C/C++不定参数的使用

文章目录 C语言的不定参C的不定参 C语言的不定参 C语言的不定参数最常见的应用示例就是printf函数&#xff0c;如下&#xff0c;参数列表中的...表示不定参数列表 #include <stdio.h> int printf(const char *format, ...);试着模拟实现C语言的printf函数 void myprin…

【Android】MotionLayout实现动画

MotionLayout不断地更新&#xff0c;文章并不适用全部最近的更新内容。 文章目录 引入 ConstraintSetTransitionManager和MotionLayout有什么区别&#xff1f; 使用ConstrainSet(属性类似于ConstrainLayout) Transition属性OnClickOnSwipeKeyFrameSetKeyPositionKeyAttribute C…

会泽一村民上山放羊吸烟引发森林火灾,AI科技急需关注

2023年4月&#xff0c;会泽县古城街道厂沟村委会望香台山林中发生了一场由疏忽引发的森林火灾。张某某在放羊时未完全熄灭烟头&#xff0c;导致7.33公顷的林地和草地被焚毁&#xff0c;直接经济损失高达29.097万元。这一事件再次凸显了日常生活中的安全隐患。 在这一背景下&…