生成对抗网络(DCGAN)手写数字生成

文章目录

  • 一、前言
  • 二、前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
  • 二、什么是生成对抗网络
    • 1. 简单介绍
    • 2. 应用领域
  • 三、创建模型
      • 1. 生成器
      • 2. 判别器
  • 四、定义损失函数和优化器
      • 1. 判别器损失
      • 2. 生成器损失
  • 五、定义训练循环
  • 六、训练模型
  • 七、创建 GIF

一、前言

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1

往期精彩内容:

  • 卷积神经网络(CNN)实现mnist手写数字识别
  • 卷积神经网络(CNN)多种图片分类的实现
  • 卷积神经网络(CNN)衣服图像分类的实现
  • 卷积神经网络(CNN)鲜花识别
  • 卷积神经网络(CNN)天气识别
  • 卷积神经网络(VGG-16)识别海贼王草帽一伙
  • 卷积神经网络(ResNet-50)鸟类识别
  • 卷积神经网络(AlexNet)鸟类识别
  • 卷积神经网络(CNN)识别验证码
  • 卷积神经网络(Inception-ResNet-v2)交通标志识别

来自专栏:机器学习与深度学习算法推荐

二、前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")
    
# 打印显卡信息,确认GPU可用
print(gpus)
from tensorflow.keras  import layers
from IPython           import display
import matplotlib.pyplot as plt
import numpy             as np
import glob,imageio,os,PIL,time
(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')

# 将图片标准化到 [-1, 1] 区间内
train_images = train_images / 127.5 - 1  
BUFFER_SIZE = 60000
BATCH_SIZE  = 256

# 批量化和打乱数据
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

二、什么是生成对抗网络

1. 简单介绍

生成对抗网络(GAN) 包含生成器和判别器,两个模型通过对抗训练不断学习、进化。

  • 生成器(Generator):生成数据(大部分情况下是图像),目的是“骗过”判别器。
  • 鉴别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器生成的“假数据”。

2. 应用领域

GAN 的应用十分广泛,它的应用包括图像合成、风格迁移、照片修复以及照片编辑,数据增强等等。

1)风格迁移

图像风格迁移是将图像A的风格转换到图像B中去,得到新的图像。

2)图像生成

GAN 不但能生成人脸,还能生成其他类型的图片,比如漫画人物。

三、创建模型

1. 生成器

生成器使用 tf.keras.layers.Conv2DTranspose (上采样)层来从种子(随机噪声)中产生图片。以一个使用该种子作为输入的 Dense 层开始,然后多次上采样直到达到所期望的 28x28x1 的图片尺寸。注意除了输出层使用 tanh 之外,其他每层均使用 tf.keras.layers.LeakyReLU 作为激活函数。

def make_generator_model():
    model = tf.keras.Sequential([
        layers.Dense(7*7*256, use_bias=False, input_shape=(100,)),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Reshape((7, 7, 256)),
        
        layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False),
        layers.BatchNormalization(),
        layers.LeakyReLU(),
        
        layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')
    ])

    return model

generator = make_generator_model()
generator.summary()

2. 判别器

判别器是一个基于 CNN 的图片分类器。

def make_discriminator_model():
    model = tf.keras.Sequential([
        layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]),
        layers.LeakyReLU(),
        layers.Dropout(0.3),
        
        layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'),
        layers.LeakyReLU(),
        layers.Dropout(0.3),
        
        layers.Flatten(),
        layers.Dense(1)
    ])

    return model

discriminator = make_discriminator_model()
discriminator.summary()

四、定义损失函数和优化器

为两个模型定义损失函数和优化器。

# 该方法返回计算交叉熵损失的辅助函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

1. 判别器损失

该方法量化判断真伪图片的能力。它将判别器对真实图片的预测值与值全为 1 的数组进行对比,将判别器对伪造(生成的)图片的预测值与值全为 0 的数组进行对比。

def discriminator_loss(real_output, fake_output):
    real_loss = cross_entropy(tf.ones_like(real_output), real_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    total_loss = real_loss + fake_loss
    return total_loss

2. 生成器损失

生成器损失量化其欺骗判别器的能力。直观来讲,如果生成器表现良好,判别器将会把伪造图片判断为真实图片(或 1)。这里我们将把判别器在生成图片上的判断结果与一个值全为 1 的数组进行对比。

def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

由于我们需要分别训练两个网络,判别器和生成器的优化器是不同的。

generator_optimizer     = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

五、定义训练循环

EPOCHS = 60
noise_dim = 100
num_examples_to_generate = 16

# 我们将重复使用该种子(在 GIF 中更容易可视化进度)
seed = tf.random.normal([num_examples_to_generate, noise_dim])

训练循环在生成器接收到一个随机种子作为输入时开始。该种子用于生产一张图片。判别器随后被用于区分真实图片(选自训练集)和伪造图片(由生成器生成)。针对这里的每一个模型都计算损失函数,并且计算梯度用于更新生成器与判别器。

# 注意 `tf.function` 的使用
# 该注解使函数被“编译”
@tf.function
def train_step(images):
    # 生成噪音
    noise = tf.random.normal([BATCH_SIZE, noise_dim])

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        generated_images = generator(noise, training=True)

        real_output = discriminator(images, training=True)
        fake_output = discriminator(generated_images, training=True)
        
        # 计算loss
        gen_loss = generator_loss(fake_output)
        disc_loss = discriminator_loss(real_output, fake_output)
    
    #计算梯度
    gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    
    #更新模型
    generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
    for epoch in range(epochs):
        start = time.time()

        for image_batch in dataset:
            train_step(image_batch)

        # 实时更新生成的图片
        display.clear_output(wait=True)
        generate_and_save_images(generator, epoch + 1, seed)

        print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))

    # 最后一个 epoch 结束后生成图片
    display.clear_output(wait=True)
    generate_and_save_images(generator, epochs, seed)
def generate_and_save_images(model, epoch, test_input):
    # 注意 training` 设定为 False
    # 因此,所有层都在推理模式下运行(batchnorm)。
    predictions = model(test_input, training=False)

    fig = plt.figure(figsize=(4,4))

    for i in range(predictions.shape[0]):
        plt.subplot(4, 4, i+1)
        plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
        plt.axis('off')

    plt.savefig('./images/19/image_at_epoch_{:04d}.png'.format(epoch))
    plt.show()

六、训练模型

调用上面定义的 train() 方法来同时训练生成器和判别器。在训练之初,生成的图片看起来像是随机噪声。随着训练过程的进行,生成的数字将越来越真实。在大概 50 个 epoch 之后,这些图片看起来像是 MNIST 数字。

%%time:将会给出cell的代码运行一次所花费的时间。

%%time
train(train_dataset, EPOCHS)

在这里插入图片描述

七、创建 GIF

import imageio,pathlib

def compose_gif():
    # 图片地址
    data_dir = "./images/19"
    data_dir = pathlib.Path(data_dir)
    paths    = list(data_dir.glob('*'))
    
    gif_images = []
    for path in paths:
        gif_images.append(imageio.imread(path))
    imageio.mimsave("./pic_gif/MINST_DCGAN_19.gif",gif_images,fps=8)
    
compose_gif()
print("GIF动图生成完成!")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/206617.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【新品上市】启扬储能管理平板,打造储能管理新模式,助力全场景储能数智化升级!

随着可再生能源的快速发展,储能技术的应用日益广泛,储能系统成为解决可再生能源波动性和不可控制性的关键环节。储能系统通过实时监测、数据分析、远程控制等智能化功能,实现能量的高效利用和系统的稳定运行。 启扬智能推出 工业级储能管理平…

自定义 element DatePicker组件指令 使选择器呈现为只读状态,用户无法直接编辑,但可以查看和选择日期

1.问题 现实中遇到列表的搜索条件使用DatePicker 组件进行开始结束时间筛选,但是手动修改input中的值,导致请求参数异常。比如讲clearable设置为false之后还是能手动清空输入框中的值。虽然组件提供了readonly 属性,但是也会让日期选择也无法…

IDEA中springboot 提示 java: 找不到符号 符号: 变量 log

在以下位置加上该配置"-Djps.track.ap.dependenciesfalse" 然后重新启动项目,到此问题解决!!!

近期知识点

aop (1) 要求利用AOP记录用户操作日志。内容包含以下信息:ip地址、用户名、请求的地址,请求的时间 ( 4 分) (2)要求利用AOP记录用户操作日志,日志记录到文本文件。内容包含以下信息&#xff…

如何用量化交易“做空”来获取收益

最近的市场环境相当不好,今年一年都没有任何主线的模式情况下去交易。更多的都是题材热点聚焦,而且板块轮动过快。市场环境不好的情况下,我们如何通过“做空”来获取收益!量化做空是指利用计算机模型和算法,通过分析市…

FPGA falsh相关知识总结

1.存储容量是128M/8 Mb16MB 2.有256个sector扇区*每个扇区64KB16MB 3.一页256Byte 4.页编程地址0256 5:在调试SPI时序的时候一定注意,miso和mosi两个管脚只要没发送数据就一定要悬空(处于高组态),不然指令会通过两…

数据爬取+数据可视化实战_哪里只得我共你(Dear Jane)_词云展示----网易云

一、前言 歌词上做文本分析,数据存储在网页上,需要爬取数据下来,词云展示在工作中也变得日益重要,接下来将数据爬虫与可视化结合起来,做个词云展示案例。 二、操作步骤 代码如下: # -*- coding:utf-8 -*-…

专家解读金融科技大势《金融科技行业2023年专利分析白皮书》发布

文/ 张翼翔 China IP 金融是国民经济的血脉,也是国家核心竞争力的重要组成部分。今年10月30日至31日举行的中央金融工作会议指出,金融要为经济社会发展提供高质量服务,坚持在市场化、法治化轨道上推进金融创新发展。近年来,人工智…

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…

知识图谱最简单的demo实现——基于pyvis

1、前言 我们在上篇文章中介绍了知识图谱的简单实现,最后使用neo4j进行了展示,对于有些情况我们可能并不想为了查看知识图的结果再去安装一个软件去实现,那么我们能不能直接将三元组画出来呢/ 接下来我们就介绍一个可视化的工具pyvis&#…

Python 2 和 Python 3 的区别

Python 2 和 Python 3 之间有很多重要的区别,特别是在处理编码、字符串和类方面的区别。Python 2和Python 3的主要区别包括以下几点: Unicode处理:Python 2有专门的Unicode字符串类型(例如,u"string"&#…

Linux中的fork()函数的面试题目

1.面试题目1 (1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork) (2)能否用代码简单的验证一下? (3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一…

Go 指针

一、关于指针 要搞明白Go语言中的指针需要先指定3个概念:指针地址、指针类型、指针取值 指针地址(&a)指针取值(*&a) 指针类型(&a) —> *int 改变数据传指针 变量的本质是给存储数据的内存地址起了一个好记的别名 比如我们…

mockito加junit gd 单元测试 笔记

目录 一、简介1.1 单元测试的特点1.2 mock类框架使用场景1.3 常用mock类框架1.3.1 mockito1.3.2 easymock1.3.3 powermock1.3.4 JMockit 二、mockito的单独使用2.1 mock对象与spy对象2.2 初始化mock/spy对象的方式2.3 参数匹配2.4 方法插桩2.5 InjectMocks注解的使用断言工具 三…

CentOS7.5搭建Hadoop-3.3.6集群的详细操作流程-实操版本

一、准备工作 1、安装 VMware,已安装的,跳过此步骤即可 官方正版VMware下载(16 pro):https://www.aliyundrive.com/s/wF66w8kW9ac 安装:选一下安装地址,一直下一步即可。(可能会要…

中职组网络安全-Windows操作系统渗透测试 -20221219win(环境+解析)

B-4:Windows操作系统渗透测试 任务环境说明: 服务器场景:20221219win 服务器场景操作系统:Windows(版本不详)(封闭靶机) 1.通过本地PC中渗透测试平台Kali对服务器场景Server08进行系统服务及版本扫描渗透测试,并将该操作显示结果中1433端口对应的服务版本信息作为F…

leetcode-142-环形链表(C语言实现)

题目: 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评…

力扣:182. 查找重复的电子邮箱(Python3)

题目: 表: Person ---------------------- | Column Name | Type | ---------------------- | id | int | | email | varchar | ---------------------- id 是该表的主键(具有唯一值的列)。 此表的每一行都包含一封电子…

Kubernetes 安全最佳实践:保护您的秘密

Kubernetes 是一个可用于微服务的开源容器编排平台。当我们想要部署容器化应用程序、自动化管理和扩展应用程序时,Kubernetes 非常有用。 在容器中运行单个微服务而不是在同一虚拟机中运行多个进程几乎总是更安全。每当我们在 Kubernetes 中启动任何 pod 时&#x…

力扣11题 盛最多水的容器 双指针算法

11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明 你不能倾斜容器. 示…