基于YOLOv8深度学习的生活垃圾分类目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:生活垃圾检测在当今社会具有重要的意义。通过对生活垃圾进行准确识别和分类,可以提高垃圾处理的效率,减少环境污染,促进资源的循环利用。本文基于YOLOv8深度学习框架训练一个进行生活垃圾目标检测的模型,开发了一款生活垃圾检测系统,可检查常见的4类生活垃圾。并结合pythonPyQT5实现了UI界面,更方便进行功能的展示。该软件支持图片视频以及摄像头进行生活垃圾目标检测,并保存检测结果;。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

生活垃圾检测在当今社会具有重要的意义。随着人口的增长和生活水平的提高,生活垃圾的产生量逐年增加,给环境带来了严重的压力。垃圾分类和处理是解决这一问题的有效途径,而生活垃圾检测则是实现垃圾分类的基础。通过对生活垃圾进行准确识别和分类,可以提高垃圾处理的效率,减少环境污染,促进资源的循环利用。

生活垃圾检测的应用场景非常广泛,主要包括以下几个方面:
家庭场景:在家庭生活中,通过使用生活垃圾检测软件,可以帮助居民快速识别不同类型的垃圾,提高垃圾分类的准确性,为后续的垃圾处理提供便利。
社区场景:在社区层面,生活垃圾检测可以作为智能垃圾桶的辅助功能,帮助居民更好地进行垃圾分类。此外,还可以通过数据分析,了解社区内各类垃圾的产生情况,为垃圾处理设施的规划和建设提供依据。
城市管理场景:在城市管理层面,生活垃圾检测可以为政府部门提供实时、准确的垃圾数据,有助于优化垃圾收集、运输和处理流程,提高城市环境卫生水平。
教育宣传场景:生活垃圾检测软件可以作为一种教育工具,帮助公众了解垃圾分类的重要性和方法,提高环保意识,形成良好的垃圾分类习惯。

博主通过搜集关于生活垃圾的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的生活垃圾检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1.可以检测日常的生活垃圾,并且分为4种类别,分别是:'可回收垃圾','有害垃圾','厨余垃圾','其他垃圾';
2.支持图片、视频及摄像头进行检测,同时支持图片的批量检测
2. 界面可实时显示目标位置目标总数置信度用时等信息;
3. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于跌倒的各类图片,并使用LabelMe标注工具对每张图片中的跌倒目标边框(Bounding Box)进行标注。一共包含2743张图片,其中训练集包含1920张图片验证集包含548张图片测试集包含275张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入FallData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\val  # val images (relative to 'path') 128 images
test: E:\MyCVProgram\GarbageDetection\datasets\GarbageSorting\images\test # val images (optional)

# number of classes
nc: 4

# Classes
names: ['recyclable waste','hazardous waste','kitchen waste','other waste']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/GarbageSorting/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型的4种分类的mAP@0.5都达到了0.84以上,平均值为0.876,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/fimg_217.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款生活垃圾分类目标检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的生活垃圾分类目标检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202625.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构-选择排序(简单选择、堆)

简单选择排序 基本思想 非常基础的算法,假设有N个数据,比较N-1轮,每轮选出当前剩余数据的最大(最小)放到数据 的开头,之后重复即可获得答案。 示例 代码 void SelectSort(OrderList *L) {RecordType t…

MySQL与其他数据库产品的比较,优势在哪里?

作为数据库管理领域的博主作家,我深知数据库在软件开发和数据管理中的重要性。在当今众多的数据库产品中,MySQL作为一种流行的开源关系型数据库管理系统,具有许多优势和特点。下面,我将通过对与其他数据库产品的比较以及MySQL的优…

Ubuntu22.04 server版本关闭DHCP,手动设置ip

在Ubuntu 22.04 中,网络配置已迁移到 Netplan,因此可以使用 Netplan 配置文件来手动设置 IP 地址并关闭 DHCP。 以下是在 Ubuntu 22.04 上手动设置 IP 地址并禁用 DHCP 的步骤: 打开终端,使用 root 权限或 sudo 执行以下命令&…

JavaScript图片处理大揭秘!掌握文件流处理方法

说在前面 💻作为一名前端开发,我们平时也少不了对文件流数据进行处理,今天简单整理一下日常开发中比较常见的一些处理文件流的场景及处理方法,希望可以帮助到大家,挤出多一点的摸鱼学习时间。 常见场景 一、input框上…

计算机网络 一到二章 PPT 复习

啥币老师要隔段时间测试,我只能说坐胡狗吧旁边 第一章 这nm真的会考,我是绷不住的 这nm有五种,我一直以为只有三种 广播帧在后面的学习中经常遇到 虽然老师在上课的过程中并没有太过强调TCP/IP的连接和断开,但我必须强调一下&…

iOS--UIPickerView学习

UIPickerView 使用场景和功能UIPickerView遵循代理协议和数据源协议创建对象,添加代理必须实现的代理方法非必要实现的方法demo用到的其他函数提示 效果展示 使用场景和功能 UIPickerView 最常见的用途是作为选项选择器,允许用户从多个选项中选择一个。…

『亚马逊云科技产品测评』活动征文| 基于etcd实现服务发现

提示:授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道 背景 etcd 是一个分布式 Key-Value 存储系统&#xff0…

Audacity降噪消除视频中杂音

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

【嵌入式Linux开发一路清障-连载04】虚拟机VirtualBox7.0安装Ubuntu22.04后挂载Windows平台共享文件夹

虚拟机安装Ubuntu22.04后挂载Windows平台共享文件夹 障碍07-虚拟机VirtualBox7.0完装完Ubuntu22.04后,无法成功挂载Windows平台中共享文件夹,无法访问电脑中的各类重要文件,我该怎么办?一、问题的模样:VirtualBox7.0设…

用Metasploit进行信息收集2

基于FTP协议收集信息 1.查看ftp服务的版本信息 打开metasploit 查看ftp版本的模块,并进入模块 msf6 > search ftp_version msf6 > use auxiliary/scanner/ftp/ftp_version msf6 auxiliary(scanner/ftp/ftp_version) > show options 查看靶机的端口开方情…

宋仕强论道之华强北自组织和激励模式(十四)

宋仕强论道之华强北自组织和激励模式(十四): 为什么一个小小深圳市华强北我宋仕强就讲这么久呢,听说玄奘大和尚刚出道时在洛阳的白马寺讲经,一个“悟”字就讲了三个月。一个事物有他的复杂性和多样性,从自然科学和社会…

visual studio 2022 更改字体和大小

工具--->选项 文本编辑器 输出窗口

【Openstack Train安装】五、Memcached/Etcd安装

本文介绍Memcached/Etcd安装步骤,Memcached/Etcd仅需在控制节点安装。 在按照本教程安装之前,请确保完成以下配置: 【Openstack Train安装】一、虚拟机创建 【Openstack Train安装】二、NTP安装 【Openstack Train安装】三、openstack安装…

处理跨域问题

这里只讨论后端对跨域支持,前端的跨域支持一般都是在测试阶段用用的,跨域还是要后端解决 跨域问题的产生:浏览器的一种安全机制-->同源策略限制 同源策略:URL中包括协议,域名,IP,端口都要完全相同,如果有一项不同,浏…

基于Java SSM框架+Vue实现病人跟踪治疗信息系统项目【项目源码+论文说明】

基于java的SSM框架Vue实现病人跟踪治疗信息系统演示 摘要 病人跟踪治疗信息管理系统采用B/S模式,促进了病人跟踪治疗信息管理系统的安全、快捷、高效的发展。传统的管理模式还处于手工处理阶段,管理效率极低,随着病人的不断增多,…

【开源】基于Vue+SpringBoot的智能教学资源库系统

项目编号: S 050 ,文末获取源码。 \color{red}{项目编号:S050,文末获取源码。} 项目编号:S050,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课…

测试相关-面试高频

测试面试相关 面试 测试的具体场景 功能测试 具体的测试工具Jmeter Postman selenium pytest 怎么看待测试的潜力与挑战 软件测试是正在快速发展,充满挑战的领域。尽管现在许多自动化测试软件的出现使得传统手工测试的方式被代替,但自动化测试工具的…

Echarts 大屏注册自定义地图解析文件流报错以及坐标显示数值和地图填充以及dataV轮播数据不显示问题解决

效果图: 1、第一种方式 后台接口获取到SVG图片的文件流,postman能够正确解析出文件流,前端调用api时需要设置返回的响应格式为image/svg+xml格式,否则解析失败 拿到文件流后是这样的 <?xml version="1.0" encoding="utf-8"?> <!-- Generato…

06 # 枚举类型

一个角色判断例子 function initByRole(role) {if (role 1 || role 2) {// do sth} else if (role 3 || role 4) {// do sth} else if (role 5) {// do sth} else {// do sth} }上面的代码存在的问题&#xff1a; 可读性差&#xff1a;很难记住数字的含义可维护性差&…

Pycharm2020.3.5激活方式

激活插件链接&#xff1a;https://pan.baidu.com/s/1tPd7V4pKUx0Z6fSKumLjTQ 提取码&#xff1a;lr12 1.pycharm主界面点开设置如下&#xff1a; 2.点击 Plugins 然后依次点击&#xff1a;小齿轮->选择本地安装&#xff08;下图&#xff09; 3.找到存放插件的目录&#xf…