A*算法学习

系列文章目录



前言

在总结

2023华为软件精英挑战赛——全赛段思路分享与总结 - 知乎 (zhihu.com)时,发现自己还有很多技术细节没搞懂,这里看静态全局路径规划最常见的A*算法,这个博主讲得很好:

A-Star(A*)寻路算法原理与实现 - 知乎 (zhihu.com),demo码源,但是是C#,我有点不熟悉:

Demo/Assets/A-Star at master · luckyWjr/Demo (github.com)。还有几个可以看的资料:

A*寻路算法简洁源码及GIF原理演示(Lua)(C#) - 知乎 (zhihu.com)

Amit’s A* Pages (stanford.edu)。。。。

希望之后可以学一下D*和JPS:

最快速的寻路算法 Jump Point Search - 知乎 (zhihu.com)


一、A*算法是什么?

基于格子(Grid)

A*算法是一种基于格子(Grid)的寻路算法,也就是说会把我们的地图看作是由 w*h 个格子组成的,因此寻得的路径也就是由一连串相邻的格子所组成的路径。

优先搜索最有可能产生最佳路径的格子。A*正是这样的算法,因此可以避免掉很多歪路(不必要的计算),提高效率。

二、逻辑实现

估价函数

要对每个可能到达的格子进行估价,来判断应该先往哪个格子走,因此我们需要一个估价函数来计算。

对于任意一个格子n,其估价函数如下:

f(n) = g(n) + h(n)

其中 g(n) 指的是从起始格子到格子n的实际代价,而 h(n) 指的是从格子n到终点格子的估计代价。

举个例子,我们来看看下面三个格子f(n)的值:

  • 格子1:绿点到1要行动移动一格,因此 g(1)=1,格子1到红点的直线距离为6个格子,因此 h(1)=6,所以 f(1)=1+6=7 。
  • 格子2:绿点到2要行动移动一格,因此 g(2)=1,格子2到红点的直线距离为4个格子,因此 h(2)=4,所以 f(2)=1+4=5 。
  • 格子3:绿点到3要对角移动,因此 g(1)= 2 ,格子1到红点的直线距离为 17 (直角三角形斜边),因此h(3)= 17 ,所以 f(3)= 2+17 =5.54 。

可以看出,f(n) 的值基本代表着从起点格子到格子n再到终点这一段路径的长度。由于 f(2) < f(3) < f(1),因此我们优先应该考虑去往格子2的情况。

在上面,我们 h(n) 指的是格子与格子间的直线距离,也就是欧几里得距离,然而它有两个弊端

  • 计算过程中伴随着平方与开根号运算,并且需要使用浮点数,性能差。
  • 实际过程中格子3并不能直接平滑的移动到红色格子,而需要水平+对角移动结合。即若没有障碍物,实际的 h(3) = 2 +3,而不是 17 。也就是说用欧几里得距离时, h(n) 的值永远小于或等于格子n到终点的最短实际距离。

因此针对上述这些问题,我们 h(n) 用的更多的是曼哈顿距离或者是对角线+直线的距离

由于计算对角线同样需要开根号以及浮点数。为了加快计算,我们可以假设两个格子间的距离为10,然后直接认为对角线距离为14(不是根号200了),这样就可以避免浮点数和根号运算了。

总结来说:

  • 如果 h(n) <= n到终点的实际距离,A*算法可以找到最短路径,但是搜索的点数多,搜索范围大,效率低。
  • 如果 h(n) > n到终点的实际距离,搜索的点数少,搜索范围小,效率高,但是得到的路径并不一定是最短的。
  • h(n) 越接近 n到终点的实际距离,那么A*算法越完美。(个人理解是如果用曼哈顿距离,那么只需要找到一条长度小于等于该距离的路径就算完成任务了。而使用对角线距离就要找到一条长度大于等于对角线距离且最短的路径才行。)
  • 若 h(n)=0,即 f(n)=g(n),A*算法就变为了Dijkstra算法(Dijstra算法会毫无方向的向四周搜索)。
  • 若 h(n) 远远大于 g(n) ,那么 f(n) 的值就主要取决于 h(n),A*算法就演变成了BFS算法。

因此在启发式搜索中,估价函数是十分重要的,采用了不同的估价可以有不同的效果。

具体寻路过程

一些基本的概念介绍完后,我们来看看怎么A*算法的具体寻路是怎么样的,基本上就是说,哪些格子我们要去估价,然后这些格子按什么顺序去估价。

我们从最简单的场景入手来理解,如下图:

第一步:因为我们的绿点可以往周边8个格子移动,那么我们就要用估价函数计算它周边格子的值,来看看往哪走比较好,得到结果如下(使用对角线距离估价):

因为我们是通过绿色格子计算得到这8个格子的,因此它们都指向绿色格子(格子中的箭头),或者称绿色格子是它们的parent。

第二步:我们找到第一步8个格子中f(n)值最小的格子(格子0),然后再计算它周边格子的f(n),如下图:

此时格子0周边格子的g(n)应该是g(0)的值加上自己到格子0的距离。例如格子1此时的g(1)应该为g(0)+14=24,即2-0-1的顺序。但是由于格子1在第一步已经算过了,当时g(1)=10,2-1的顺序。这里我们要用较小的那个值,因为g值小,说明路径短。格子3,4,5同理。而格子6之前没有计算过,因此f(6)=g(6)+h(6)=(g(0)+14)+h(h),顺序2-0-6。

格子7,8由于是障碍物,直接不管就行。格子2由于之前已经计算过它周边了,没有再计算它的意义了,也不用管。

第三步:我们从剩下的8个深蓝色的格子中再找出f(n)最小的格子,由于有3个等于58的格子,我们随便取一个计算它周边的格子,如下图:

这里可以发现,格子1的g值并不是最小的,但是不要紧,当我们后面计算到格子2时,会更新格子1的g值(前面说了会用较小的g值),并且箭头指向格子2。

第四步...第n步:一直找出深蓝色格子中的f(n)最小的格子,然后计算周边格子的估价值。

最后一步:当我们发现某个格子(格子1)周边有个格子是终点格子时,就说明我们找到了到终点的最短路径。

我们只需要根据格子1的箭头指向一直往前就可以得到完整的路径:

三、代码实现

首先由于我们要记录格子的估价值,以及它的parent,因此需要一个类来存储这些值:

public class Node
{
    Int2 m_position;//下标
    public Int2 position => m_position;
    public Node parent;//上一个node
    
    //角色到该节点的实际距离
    int m_g;
    public int g {
        get => m_g;
        set {
            m_g = value;
            m_f = m_g + m_h;
        }
    }

    //该节点到目的地的估价距离
    int m_h;
    public int h {
        get => m_h;
        set {
            m_h = value;
            m_f = m_g + m_h;
        }
    }

    int m_f;
    public int f => m_f;

    public Node(Int2 pos, Node parent, int g, int h) {
        m_position = pos;
        this.parent = parent;
        m_g = g;
        m_h = h;
        m_f = m_g + m_h;
    }
}

然后我们需要两个数据结构openclose来存储格子,在之前的过程中,将要被计算周边格子的格子都存储在open当中,当周边格子计算完后,就可以把这个格子存储到close中,然后把它周边的格子再放入到open中。

例如一开始我们把起始格子放入open中,然后从open中取出f(n)值最小的一个格子(这里使用C#的Linq排序)去计算它周边的格子。因为此时open中只有一个元素,因此就是计算起始格子周边的格子。接着把起始格子周边8个格子加入到open中,把起始格子从open中删除加入到close中。

然后再从open中找出f(n)最小的格子,将它周边的格子加入到open中,并将自己从open中删除加入到close中,如此循环。

再每次计算周边格子的时候,需要判断这些格子是否超出边界,是否是障碍物,是否在close中,这三种情况不需要再处理该格子了。如果格子已经在open中,就要像之前所说的,若新的g值小于老的g值,就要更新g、f 以及parent的值。

最后如果周边某个格子是终点(代表寻路完成)或者open列表为空(代表可用格子全部计算完,但却没找到终点,死路一条!),则结束寻路过程。

可以发现整个过程都要频繁的用到了增删以及查询,因此open和close使用了Dictionary。

代码如下:

public class AStar {
    static int FACTOR = 10;//水平竖直相邻格子的距离
    static int FACTOR_DIAGONAL = 14;//对角线相邻格子的距离

    bool m_isInit = false;
    public bool isInit => m_isInit;

    UIGridController[,] m_map;//地图数据
    Int2 m_mapSize;
    Int2 m_player, m_destination;//起始点和结束点坐标
    EvaluationFunctionType m_evaluationFunctionType;//估价方式

    Dictionary<Int2, Node> m_openDic = new Dictionary<Int2, Node>();//准备处理的网格
    Dictionary<Int2, Node> m_closeDic = new Dictionary<Int2, Node>();//完成处理的网格

    Node m_destinationNode;

    public void Init(UIGridController[,] map, Int2 mapSize, Int2 player, Int2 destination, EvaluationFunctionType type = EvaluationFunctionType.Diagonal) {
        m_map = map;
        m_mapSize = mapSize;
        m_player = player;
        m_destination = destination;
        m_evaluationFunctionType = type;

        m_openDic.Clear();
        m_closeDic.Clear();

        m_destinationNode = null;

        //将起始点加入open中
        AddNodeInOpenQueue(new Node(m_player, null, 0, 0));
        m_isInit = true;
    }

    //计算寻路
    public IEnumerator Start() {
        while(m_openDic.Count > 0 && m_destinationNode == null) {
            //按照f的值升序排列
            m_openDic = m_openDic.OrderBy(kv => kv.Value.f).ToDictionary(p => p.Key, o => o.Value);
            //提取排序后的第一个节点
            Node node = m_openDic.First().Value;
            //因为使用的不是Queue,因此要从open中手动删除该节点
            m_openDic.Remove(node.position);
            //处理该节点相邻的节点
            OperateNeighborNode(node);
            //处理完后将该节点加入close中
            AddNodeInCloseDic(node);
            yield return null;
        }
        if(m_destinationNode == null)
            Debug.LogError("找不到可用路径");
        else
            ShowPath(m_destinationNode);
    }

    //处理相邻的节点
    void OperateNeighborNode(Node node) {
        for(int i = -1; i < 2; i++) {
            for(int j = -1; j < 2; j++) {
                if(i == 0 && j == 0)
                    continue;
                Int2 pos = new Int2(node.position.x + i, node.position.y + j);
                //超出地图范围
                if(pos.x < 0 || pos.x >= m_mapSize.x || pos.y < 0 || pos.y >= m_mapSize.y)
                    continue;
                //已经处理过的节点
                if(m_closeDic.ContainsKey(pos))
                    continue;
                //障碍物节点
                if(m_map[pos.x, pos.y].state == GridState.Obstacle)
                    continue;
                //将相邻节点加入open中
                if(i == 0 || j == 0)
                    AddNeighborNodeInQueue(node, pos, FACTOR);
                else
                    AddNeighborNodeInQueue(node, pos, FACTOR_DIAGONAL);
            }
        }
    }

    //将节点加入到open中
    void AddNeighborNodeInQueue(Node parentNode, Int2 position, int g) {
        //当前节点的实际距离g等于上个节点的实际距离加上自己到上个节点的实际距离
        int nodeG = parentNode.g + g;
        //如果该位置的节点已经在open中
        if(m_openDic.ContainsKey(position)) {
            //比较实际距离g的值,用更小的值替换
            if(nodeG < m_openDic[position].g) {
                m_openDic[position].g = nodeG;
                m_openDic[position].parent = parentNode;
                ShowOrUpdateAStarHint(m_openDic[position]);
            }
        }
        else {
            //生成新的节点并加入到open中
            Node node = new Node(position, parentNode, nodeG, GetH(position));
            //如果周边有一个是终点,那么说明已经找到了。
            if(position == m_destination)
                m_destinationNode = node;
            else
                AddNodeInOpenQueue(node);
        }
    }

    //加入open中,并更新网格状态
    void AddNodeInOpenQueue(Node node) {
        m_openDic[node.position] = node;
        ShowOrUpdateAStarHint(node);
    }

    void ShowOrUpdateAStarHint(Node node) {
        m_map[node.position.x, node.position.y].ShowOrUpdateAStarHint(node.g, node.h, node.f,
            node.parent == null ? Vector2.zero : new Vector2(node.parent.position.x - node.position.x, node.parent.position.y - node.position.y));
    }

    //加入close中,并更新网格状态
    void AddNodeInCloseDic(Node node) {
        m_closeDic.Add(node.position, node);
        m_map[node.position.x, node.position.y].ChangeInOpenStateToInClose();
    }

    //寻路完成,显示路径
    void ShowPath(Node node) {
        while(node != null) {
            m_map[node.position.x, node.position.y].ChangeToPathState();
            node = node.parent;
        }
    }

    //获取估价距离
    int GetH(Int2 position) {
        if(m_evaluationFunctionType == EvaluationFunctionType.Manhattan)
            return GetManhattanDistance(position);
        else if(m_evaluationFunctionType == EvaluationFunctionType.Diagonal)
            return GetDiagonalDistance(position);
        else
            return Mathf.CeilToInt(GetEuclideanDistance(position));
    }

    //获取曼哈顿距离
    int GetDiagonalDistance(Int2 position) {
        int x = Mathf.Abs(m_destination.x - position.x);
        int y = Mathf.Abs(m_destination.y - position.y);
        int min = Mathf.Min(x, y);
        return min * FACTOR_DIAGONAL + Mathf.Abs(x - y) * FACTOR;
    }

    //获取对角线距离
    int GetManhattanDistance(Int2 position) {
        return Mathf.Abs(m_destination.x - position.x) * FACTOR + Mathf.Abs(m_destination.y - position.y) * FACTOR;
    }

    //获取欧几里得距离,测试下来并不合适
    float GetEuclideanDistance(Int2 position) {
        return Mathf.Sqrt(Mathf.Pow((m_destination.x - position.x) * FACTOR, 2) + Mathf.Pow((m_destination.y - position.y) * FACTOR, 2));
    }

    public void Clear() {
        foreach(var pos in m_openDic.Keys) {
            m_map[pos.x, pos.y].ClearAStarHint();
        }
        m_openDic.Clear();

        foreach(var pos in m_closeDic.Keys) {
            m_map[pos.x, pos.y].ClearAStarHint();
        }
        m_closeDic.Clear();

        m_destinationNode = null;

        m_isInit = false;
    }
}

同时这里,如果f相同,就取H小的,这样会更优

修改代码如下:

//先按照f的值升序排列,当f值相等时再按照h的值升序排列
m_openDic = m_openDic.OrderBy(kv => kv.Value.f).ThenBy(kv => kv.Value.h).ToDictionary(p => p.Key, o => o.Value);


总结

多研究下路径规划算法,同时要落实细节,今天这个代码就看得很舒服。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/202122.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第十五届蓝桥杯(Web 应用开发)模拟赛 2 期-大学组(详细分析解答)

目录 1.相不相等 1.1 题目要求 1.2 题目分析 1.3 源代码 2.三行情书 2.1 题目要求 2.2 题目分析 2.3 源代码 3.电影院在线订票 3.1 题目要求 3.2 题目分析 3.3 源代码 4.老虎坤&#xff08;不然违规发不出来&#xff09; 4.1 题目要求 4.2 题目分析 4.3 源代码 …

mac 聚焦搜索不显示

我是连搜索框都不显示&#xff0c;不是搜索结果显示异常 点右上角的搜索按钮都毫无反应 我检查过快捷键之类的设置&#xff0c;都正常&#xff0c;最后是通过删除文件解决的 cd ~/Library/Preferences/ rm com.apple.Spotlight.plist 重启 mac 参考 Spotlight Search Not W…

“rhdf5filters.so’ not found when install ‘glmGamPoi‘ package

在R中安装glmGamPoi包的时候&#xff0c;出现了如下报错&#xff1a; install.packages(glmGamPoi) 尝试方案一&#xff1a; sudo apt install pkg-config libhdf5-dev安装lighdf5-dev&#xff0c;并将安装路径链接至usr/lib/文件。 locate rhdf5filters.so sudo ln -s /hom…

java-var类型推断的使用时机

写在前面&#xff1a; 在jdk9的时候引入了var关键字&#xff0c;但是这是一把双刃剑&#xff0c;使用的好的话可以简化代码提高可读性&#xff0c;如果使用的不好的话会导致反效果。 文章目录 使用原则推荐使用时机new关键字创建对象类型不重要for循环 不适合与泛型大量结合字…

【Java学习笔记】75 - 算法优化入门 - 马踏棋盘问题

一、意义 1.算法是程序的灵魂&#xff0c;为什么有些程序可以在海量数据计算时&#xff0c;依然保持高速计算? 2.拿老韩实际工作经历来说&#xff0c;在Unix下开发服务器程序&#xff0c;功能是要支持上千万人同时在线&#xff0c;在上线前&#xff0c; 做内测&#xff0c;一…

vuepress-----9、PWA

# 9、PWA 使用babel 的插件形式 [vuepress/pwa,{serviceWorker: true,updatePopup: {message: "New content is available.",buttonText: "Refresh"}}]提供 Manifest 和 icons (opens new window) 拷贝到public目录下 发布后出现 service workers [外链图片…

Spring第三课,Lombok工具包下载,对应图书管理系统列表和登录界面的后端代码,分层思想

目录 一、Lombok工具包下载 二、前后端互联的图书管理系统 规范 三、分层思想 三层架构&#xff1a; 1.表现层 2.业务逻辑层 3.数据层 一、Lombok工具包下载 这个工具包是为了做什么呢&#xff1f; 他是为了不去反复的设置setting and getting 而去产生的工具包 ⚠️工具…

二叉树(判断是否为对称二叉树)

题目&#xff08;力扣&#xff09;&#xff1a; 观察题目&#xff0c;只需判断该二叉树是否对称。 判断二叉树是否对称&#xff0c;就可以换位去判断该二叉树的左子树和右子树是否对称。 这时就可以写一个辅助函数来方便判断。 该函数是判断两颗树是否镜像对称&#xff0c;这…

【华为数通HCIP | 网络工程师】821刷题日记-IS-IS(2)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

Docker—更新应用程序

在本部分中&#xff0c;你将更新应用程序和映像。您还将了解如何停止和移除容器。 一、更新源代码 在以下步骤中&#xff0c;当您没有任何待办事项列表项时&#xff0c;您将把“空文本”更改为“您还没有待办事项&#xff01;在上面添加一个&#xff01;” 1、在src/static/…

电子学会C/C++编程等级考试2022年12月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:鸡兔同笼 一个笼子里面关了鸡和兔子(鸡有2只脚,兔子有4只脚,没有例外)。已经知道了笼子里面脚的总数a,问笼子里面至少有多少只动物,至多有多少只动物。 时间限制:1000 内存限制:65536输入 一行,一个正整数a (a < 327…

分发测试应用平台怎么用之应用详情功能

我的应用 应用功能引导 ●您会看到以下页面&#xff0c;下图为功能的解释方便您的运行 我的应用-详情-应用详情 ●我们点击应用详情数字③&#xff0c;点击应用详情&#xff0c;下图是对详情页的功能介绍。 详情-应用设置 ●详情-应用设置-下图为应用设置的上半部分 ●下图为应…

保障海外业务发展,Coremail提供高效安全的海外通邮服务

11月22日&#xff0c;Coremail举办《全球通邮&#xff1a;如何保障安全、快捷的海外中继服务》直播分享会&#xff0c;直播会上Coremail安全团队和直播嘉宾复旦大学校园信息化办公室徐艺扬老师就海外中继服务进行了深度分享。 ​ 海外通邮困难重重 境外垃圾邮件数量居高不下…

力扣日记11.28-【二叉树篇】二叉树的最小深度

力扣日记&#xff1a;【二叉树篇】二叉树的最小深度 日期&#xff1a;2023.11.28 参考&#xff1a;代码随想录、力扣 111. 二叉树的最小深度 题目描述 难度&#xff1a;简单 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点…

快速入门opencv(python版)

Open Source Computer Vision Library。OpenCV是一个&#xff08;开源&#xff09;发行的跨平台计算机视觉库&#xff0c;可以运行在Linux、Windows和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C 类构成&#xff0c;同时提供了Python、Ruby、MATLAB等语言的…

后端项目连接数据库-添加MyBatis依赖并检测是否成功

一.在pom.xml添加Mybatis相关依赖 在Spring Boot项目中&#xff0c;编译时会自动加载项目依赖&#xff0c;然后使用依赖包。 需要在根目录下pom.xml文件中添加Mybatis依赖项 <!-- Mybatis整合Spring Boot的依赖项 --> <dependency><groupId>org.mybatis.s…

数据结构---树

树概念及结构 1.树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;而叶朝下的 有一个特殊的结点&#xff0c…

血的教训---入侵redis并免密登录redis所在服务器

血的教训—入侵redis并免密登录redis所在服务器 今天就跟着我一起来入侵redis并免密登录redis所在服务器吧&#xff0c;废话不多说&#xff0c;我们直接开始吧。 这是一个体系的学习步骤&#xff0c;当然如果基础扎实的话可以继续往下面看 以下都是关联的文章&#xff0c;可以学…

4.6-容器的端口映射

首先&#xff0c;我们来拉取Nginx的image镜像。 docker pull nginx 接下来我们创建一个Nginx的容器。 docker run --name nginx -d nginx 但是&#xff0c;这样启动nginx容器的话我们没法访问。这个时候怎么办呢&#xff1f;就需要将Nginx这个服务暴露给外面的世界。 这时可以使…

【CodeTop】TOP 100 刷题 21-30

文章目录 21. 螺旋矩阵题目描述代码与解题思路 22. 反转链表 II题目描述代码与解题思路 23. 相交链表题目描述代码与解题思路 24. 合并 K 个升序链表题目描述代码与解题思路 25. 字符串相加题目描述代码与解题思路 26. 最长递增子序列题目描述代码与解题思路 27. 重排链表题目描…