基于合成数据的行人检测AI模型训练

在线工具推荐: 三维数字孪生场景工具  -  GLTF/GLB在线编辑器  -  Three.js AI自动纹理化开发  YOLO 虚幻合成数据生成器  -  3D模型在线转换  -   3D模型预览图生成服务

近年来,自动驾驶汽车因其对社会的广泛影响而越来越受欢迎,因为它们提高了乘客的安全性和便利性,降低了油耗,减少了交通堵塞和事故,节省了成本,提高了可靠性。然而,自动驾驶汽车存在一些功能错误,在完全部署到主干道上之前,需要将其降至最低。行人检测是自动驾驶汽车中防止事故的最重要任务之一(功能错误)。然而,由于以下问题,准确的行人检测是一项非常具有挑战性的任务:1、遮挡和变形;2、低质量和多光谱图像。

最近,深度学习(DL)技术在解决自动驾驶汽车的上述行人检测问题方面显示出巨大的潜力。本调查报告概述了行人检测问题,以及借助深度学习技术解决这些问题的最新进展。此外,还介绍了内容丰富的讨论和未来的研究工作,旨在为读者提供见解并激发新的研究方向。

行人检测是一种计算机视觉技术,是自动驾驶汽车能够检测其路径上人体运动的最重要功能之一,有助于确保人员安全,识别和追捕人群中的罪魁祸首,防止事故发生,避免移动的车辆和障碍物。此类检测任务可以在雷达、摄像头和光探测和测距 (LiDAR) 等传感器的高级组合的帮助下执行。近年来,引入了一种名为高级驾驶辅助系统(ADS)的系统,该系统有助于预防不可预测的事故。该系统具有许多功能,可以构建多个任务,例如保护通勤者、环境和驾驶员。行人检测是其既定功能之一。

本文介绍了一种基于YOLO的实时计算机视觉机动车道行人检测。YOLO架构速度快,每秒可处理45帧,使基于YOLO的架构可用于实时机动车道行人检测实验。在本文中,将使用UnrealSynth虚幻合成数据生成器 来生成训练所需要的数据集,用户只需要将在UnrealSynth虚幻合成数据生成器中搭建虚拟场景,经过对虚拟场景的简单配置就可以自动生成YOLO模型训练数据集,非常的简单方便:

基于YOLO的实时计算机视觉自动机动车道行人检测

1. 场景准备

  • 将模型导入到场景。
  • 配置场景先关参数,如:生成的图片数据集的图片分辨率、生成的图片的数量等。

2. 生成数据集

设置参数后,点击【确定】后会在本地目录中...\UnrealSynth\Windows\UnrealSynth\Content\UserData 生成本地合成数据集,本地数据包含两个文件夹以及一个 yaml 文件:images、labels、test.yaml 文件;images中存放着生成的图片数据集,labels中存放着生成的标注数据集。

images和labels目录下各有两个目录:train 和 val,train 目录表示训练数据目录,val 表示验证数据目录,标注数据的格式如下所示:

0 0.68724 0.458796 0.024479 0.039815
0 0.511719 0.504167 0.021354 0.034259
0 0.550781 0.596759 0.039062 0.04537
0 0.549219 0.368519 0.023438 0.044444
0 0.47526 0.504167 0.009896 0.030556
0 0.470313 0.69537 0.027083 0.035185
0 0.570052 0.499074 0.016146 0.040741
0 0.413542 0.344444 0.022917 0.037037
0 0.613802 0.562037 0.015104 0.027778
0 0.477344 0.569444 0.017188 0.016667

synth.yaml是数据的配置文件,数据格式如下:

path:
train: images
val: images
test:
names:
 0: Safety helmet

3、YOLOv5模型训练

生成数据集后,下一步就是利用Yolo来训练模型,第一步,打开 ultralytics hub 在线训练工具,将刚才生成的数据集上传到ultralytics hub

将合成数据上传后,选择YOLO模型版本,确定好YOLO模型版本后,点击【continue】就可以开始使用ultralytics来训练集我们的模型了,如下所示:

选择YOLO模型后点击下一步将会生成用户key值,这个key值将在下一步模型训练时用到

复制【step1】中中的内容,点击【step2】进入到google Colab页面,如下所示:

首先,先点击step中的播放按钮,安装环境依赖,如上图所示;环境安装成功后,接下来将【Start】中的整个内容给都换掉,用在上一步中复制的key值整体替换里面原来的信息,如图:

然后点击播放按钮,开始训练模型,如下图所示:

模型训练需要一段时间...

4、训练模型验证

模型训练完成之后,可以用训练好的模型验证一下,用几张工地工人干活的场景图片,导入用图片来验证一下,操作步骤如图所示:

图片验证结果如下:

转载:基于合成数据的行人检测AI模型训练 (mvrlink.com) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/201731.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

专业的事交给专业的公司来做,文件销毁 数据销毁 硬盘销毁

在当今信息化社会,数据和文件已经成为企业和个人生活中不可或缺的一部分。然而,随着数据量的不断增长,如何确保数据的安全性和隐私性成为了一个亟待解决的问题。为了解决这个问题,文件销毁、硬盘销毁、数据销毁和物料销毁等技术应…

作为用户,推荐算法真的是最优解么?

前言 众所周知,随着互联网技术的发展,推荐算法也越来越普及。无论是购物网站、社交媒体平台还是在线影视平台,推荐算法已成为用户获取相关信息的主要途径。据悉,近期GitHub决定结合算法推荐,将“Following”和“For Yo…

利用ogr2ogr从PostGIS中导出/导入Tab/Dxf/Geojson等格式数据

ogr2ogr Demo Command 先查看下当前gdal支持的全部格式,部分gdal版本可能不支持PostGIS。 如出现PostgreSQL表名支持。 #全部支持的格式 ogrinfo --formats | sort #AVCBin -vector- (rov): Arc/Info Binary Coverage #AVCE00 -vector- (rov): Arc/Info E00 (ASC…

任务管理流程及任务管理工具

Leangoo领歌是一款永久免费的专业的敏捷开发管理工具,提供端到端敏捷研发管理解决方案,涵盖敏捷需求管理、任务协同、进展跟踪、统计度量等。 Leangoo支持敏捷研发管理全流程,包括小型团队敏捷开发,规模化敏捷SAFe,Scr…

vue3还用this吗?getCurrentInstance获取当前组件实例

在 Vue 2 中,this 关键字代表当前组件实例。在组件的选项对象中,this 可以用于访问组件实例的属性、方法以及 Vue 实例的一些特定方法。 在Vue3中,我们发现this是undefined,那我们真的没法使用this了吗?vu3给我们提供…

了解HashMap底层数据结构吗

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

从零搭建AlibabaCloud微服务项目

1&#xff0c;创建maven项目工程如下 equipment-admin 后台equipment-applet 前台或小程序端或app、h5equipment-common 公共模块equipment-gateway 网关equipment-mapper mapper层操作数据库equipment-model 实体类对应数据库表 2&#xff0c;在父pom文件引入依赖 <proper…

【C++】Makefile

宏定义含义举例CPPFLAGSC 预编译的选项CPPFLAGS(r’-DRILL_USE_BTHREAD1’)CFLAGSC 编译器的选项CFLAGS(’ -g -Ofast -pipe -W -Wall -fPIC’)CXXFLAGSC 编译器的选项CXXFLAGS(’ -g -Ofast -pipe -W -Wall -Werror -fPIC -DRAPIDJSON_HAS_STDSTRING -stdc17’ ) 写在最后&…

MySQL--主从复制

主从复制 主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从库服务器中&#xff0c;然后在从库上对这些日志重新执行&#xff08;也叫重做&#xff09;&#xff0c;从而使得从库和主库的数据保持同步。 MySQL支持一台主库同时向多台从库进行复制&#xff0c;从库同时…

微服务链路追踪组件SkyWalking实战

概述 微服务调用存在的问题 串联调用链路&#xff0c;快速定位问题&#xff1b;理清服务之间的依赖关系&#xff1b;微服务接口性能分析&#xff1b;业务流程调用处理顺序&#xff1b; 全链路追踪&#xff1a;对请求源头到底层服务的调用链路中间的所有环节进行监控。 链路…

深入理解MySQL索引底层数据结构与算法

索引的本质 索引是帮助MySQL高效获取数据的排好序的数据结构 索引的数据结构 二叉树红黑数Hash表B-Tree MySQL索引底层为啥不用二叉树 如图&#xff0c;对单边增长的数据&#xff0c;索引效率没有什么提升 MySQL索引底层为啥不用红黑数 红黑数&#xff1a;二叉平衡树 随…

王道p18 04.从有序顺序表中删除其值在给定值s与1之间(要求s<1)的所有元素,若s或t不合理或顺序表为空,则显示出错信息并退出运行。(c语言代码实现)

视频讲解在这里哦&#xff08;感谢支持&#xff01;&#xff09;&#x1f447; p18 第四题王道数据结构课后算法题&#xff08;c语言代码实现&#xff09;_哔哩哔哩_bilibili 本题代码如下 void deletest(struct sqlist* L, int s, int t) {int i 0;int j 0;if (s > t …

onelist能让alist聚合网盘拥有海报墙

什么是 onelist &#xff1f; onelist 是一个类似 emby 的专注于刮削 alist 聚合网盘形成影视媒体库的程序。 主要解决以下痛点&#xff1a; alist 挂载云盘后能在网页端看视频&#xff0c;却没有分类&#xff0c;没有海报墙&#xff1b;使用 webdav 挂载本地后&#xff0c;用…

客服管理者如何有效管理客服团队,有哪些高效方式?

在如今的市场竞争中&#xff0c;客户服务是企业成功的关键因素之一。因此&#xff0c;客服团队的有效管理至关重要。客服管理者需要了解如何有效地管理客服团队&#xff0c;以确保客户的满意度和忠诚度&#xff0c;从而提高企业的竞争力。 以下是客服管理者如何有效管理客服团队…

Stable Diffusion绘画系列【6】:东方美学作品

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…

可变参数列表

demo 2&#xff1a;求任意多个数据中的最大值(至少一个)&#xff0c;要求不能使用数组 因为目前参数个数不确定&#xff0c;那么函数编写的时候&#xff0c;参数个数也无法确定&#xff0c;换句话说&#xff0c;函数也就没法编写 不过&#xff0c;C提供了满足该场景的解决方案&…

Qt 天气预报项目

参考引用 QT开发专题-天气预报 1. JSON 数据格式 1.1 什么是 JSON JSON (JavaScript Object Notation)&#xff0c;中文名 JS 对象表示法&#xff0c;因为它和 JS 中对象的写法很类似 通常说的 JSON&#xff0c;其实就是 JSON 字符串&#xff0c;本质上是一种特殊格式的字符串…

使用影刀指令+python实现简单的长文本乱序加密

本文意在利用影刀指令python代码&#xff0c;实现一种较为简单的长文本加密和解密&#xff0c;流程结构分为两步&#xff1a; 加密原理–是把字符转为列表&#xff0c;利用列表random模块中的shuffle函数做随机乱序。解密原理–是利用了列表的索引追踪&#xff0c;先前创建字典…

VSCODE+QEMU+WSL调试RISCV代码(SBI、kernel)

前言 最近在对RISC-V架构比较感兴趣&#xff0c;正好手头有《RISC-V体系结构编程与实践》的书籍&#xff0c;就打算跟随笨叔将这块的知识学习起来&#xff0c;最开始当然是需要搭建一个基础的实验平台&#xff0c;本来笨叔是贴心的提供了VMare的环境&#xff0c;奈何天生叛逆的…

Ubuntu部署jmeter与ant

为了整合接口自动化的持续集成工具&#xff0c;我将jmeter与ant都部署在了Jenkins容器中&#xff0c;并配置了build.xml 一、ubuntu部署jdk 1&#xff1a;先下载jdk-8u74-linux-x64.tar.gz&#xff0c;上传到服务器&#xff0c;这里上传文件用到了ubuntu 下的 lrzsz。 ubunt…