线性可分SVM摘记

线性可分SVM摘记

  • 0. 线性可分
  • 1. 训练样本到分类面的距离
  • 2. 函数间隔和几何间隔、(硬)间隔最大化
  • 3. 支持向量

\qquad 线性可分的支持向量机是一种二分类模型,支持向量机通过核技巧可以成为非线性分类器。本文主要分析了线性可分的支持向量机模型,主要取自于李航《统计学习方法》第七章。

0. 线性可分

\qquad 如下图所示,考虑训练数据“线性可分”的情况:
\qquad 在这里插入图片描述
\qquad 假设分类面 w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 可以将两类数据完整分开,任一训练样本 x \boldsymbol x x输出值(目标值) y y y 满足:

y = sgn ( w T x + b ) = { + 1 , w T x + b > 0   ( x ∈ ℓ 1 ) − 1 , w T x + b < 0   ( x ∈ ℓ 2 ) \qquad\qquad\qquad y=\text{sgn}(\boldsymbol w^T\boldsymbol x+b)=\begin{cases}+1,\quad\boldsymbol w^T\boldsymbol x+b>0\ (\boldsymbol x\in\ell_1)\\-1,\quad\boldsymbol w^T\boldsymbol x+b<0\ (\boldsymbol x\in\ell_2)\end{cases} y=sgn(wTx+b)={+1,wTx+b>0 (x1)1,wTx+b<0 (x2)
\qquad

1. 训练样本到分类面的距离

\qquad 任一样本 x \boldsymbol x x 到分类面的垂直距离为: r = y ( w T x + b ) ∥ w ∥ r=\dfrac{y(\boldsymbol w^T\boldsymbol{x}+b)}{\Vert\boldsymbol w\Vert} r=wy(wTx+b)

∙ \quad\bullet  正例 x i \boldsymbol x_i xi(满足 w T x i + b > 0 ,   y i = + 1 \boldsymbol w^T\boldsymbol x_i+b>0,\ y_i=+1 wTxi+b>0, yi=+1

\qquad\qquad 在这里插入图片描述

\qquad 假设 x i \boldsymbol x_i xi 到分类面的距离为 r i r_i ri,向量 x ˉ \bar{\boldsymbol x} xˉ 在分类面(满足 w T x ˉ + b = 0 \boldsymbol{w}^T\bar{\boldsymbol{x}}+b=0 wTxˉ+b=0),显然 x i = x ˉ + r i w ∥ w ∥ \boldsymbol x_i=\bar{\boldsymbol x}+r_i\dfrac{\boldsymbol w}{\Vert\boldsymbol w\Vert} xi=xˉ+riww

\qquad 那么
w T x i + b = w T ( x ˉ + r i w ∥ w ∥ ) + b = w T x ˉ + b + w T r i w ∥ w ∥ = r i w T w ∥ w ∥ = r i ∥ w ∥ \qquad\qquad\qquad\begin{aligned}\boldsymbol w^T\boldsymbol x_i+b&=\boldsymbol w^T(\bar{\boldsymbol x}+r_i\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert})+b\\ &=\boldsymbol w^T\bar{\boldsymbol x}+b+\boldsymbol w^Tr_i\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=r_i\frac{\boldsymbol w^T\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=r_i\Vert\boldsymbol w\Vert\end{aligned} wTxi+b=wT(xˉ+riww)+b=wTxˉ+b+wTriww=riwwTw=riw

\qquad 可得到正例 x i \boldsymbol x_i xi 到分类面的垂直距离 r i = w T x i + b ∥ w ∥ r_i=\dfrac{\boldsymbol w^T\boldsymbol x_i+b}{\Vert\boldsymbol w\Vert} ri=wwTxi+b

\qquad
∙ \quad\bullet  负例 x j \boldsymbol x_j xj(满足 w T x j + b < 0 ,   y j = − 1 \boldsymbol w^T\boldsymbol x_j+b<0,\ y_j=-1 wTxj+b<0, yj=1

\qquad\qquad 在这里插入图片描述

\qquad 假设 x j \boldsymbol x_j xj 到分类面的距离为 r j r_j rj,向量 x ˉ \bar{\boldsymbol x} xˉ 在分类面(满足 w T x ˉ + b = 0 \boldsymbol w^T\bar{\boldsymbol x}+b=0 wTxˉ+b=0),显然 x j = x ˉ − r j w ∥ w ∥ \boldsymbol x_j=\bar{\boldsymbol x}-r_j\dfrac{\boldsymbol w}{\Vert\boldsymbol w\Vert} xj=xˉrjww

\qquad 那么
w T x j + b = w T ( x ˉ − r j w ∥ w ∥ ) + b = w T x ˉ + b − w T r j w ∥ w ∥ = − r j w T w ∥ w ∥ = − r j ∥ w ∥ \qquad\qquad\qquad\begin{aligned}\boldsymbol w^T\boldsymbol x_j+b&=\boldsymbol w^T(\bar{\boldsymbol x}-r_j\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert})+b\\ &=\boldsymbol w^T\bar{\boldsymbol x}+b-\boldsymbol w^Tr_j\frac{\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=-r_j\frac{\boldsymbol w^T\boldsymbol w}{\Vert\boldsymbol w\Vert}\\ &=-r_j\Vert\boldsymbol w\Vert\end{aligned} wTxj+b=wT(xˉrjww)+b=wTxˉ+bwTrjww=rjwwTw=rjw
\qquad 可得到负例 x j \boldsymbol x_j xj 到分类面的垂直距离 r j = − w T x j + b ∥ w ∥ r_j=-\dfrac{\boldsymbol w^T\boldsymbol x_j+b}{\Vert\boldsymbol w\Vert} rj=wwTxj+b
\qquad

2. 函数间隔和几何间隔、(硬)间隔最大化

\qquad 由于任一训练样本 x i \boldsymbol x_i xi 的输出值 y y y 满足: y = { + 1 , w T x i + b > 0    ( ∀   x i ∈ ℓ 1 ) − 1 , w T x i + b < 0    ( ∀   x i ∈ ℓ 2 ) y=\begin{cases}+1,\quad\boldsymbol w^T\boldsymbol x_i+b>0\ \ (\forall\ \boldsymbol x_i\in\ell_1)\\-1,\quad\boldsymbol w^T\boldsymbol x_i+b<0\ \ (\forall\ \boldsymbol x_i\in\ell_2)\end{cases} y={+1,wTxi+b>0  ( xi1)1,wTxi+b<0  ( xi2),可定义两种间隔 ( margin ) (\text{margin}) (margin)来描述“训练样本 x i \boldsymbol x_i xi 到分类面的远近”。

\qquad
∙ \quad\bullet  函数间隔 ( functional margin ) (\text{functional margin}) (functional margin)

γ ^ i = y i ( w T x i + b ) = ∣ w T x i + b ∣ \qquad\qquad\hat{\gamma}_i=y_i(\boldsymbol w^T\boldsymbol x_i+b)=\vert\boldsymbol w^T\boldsymbol x_i+b\vert γ^i=yi(wTxi+b)=wTxi+b

函数间隔只能够相对地描述“训练样本 x i \boldsymbol x_i xi 到分类面的远近”。
例如, H 1 :   w T x + b = 0 \mathcal H_1:\ \boldsymbol w^T\boldsymbol x+b=0 H1: wTx+b=0 H 2 :   λ w T x + λ b = 0 \mathcal H_2:\ \lambda\boldsymbol w^T\boldsymbol x+\lambda b=0 H2: λwTx+λb=0 实际上是指同一个分类面(假设 λ > 0 \lambda>0 λ>0
 
对训练样本 x i \boldsymbol x_i xi 而言,却有 { γ ^ 1 i = ∣ w T x i + b ∣ γ ^ 2 i = λ ∣ w T x i + b ∣ \begin{cases}\hat{\gamma}_{1i}=\vert\boldsymbol w^T\boldsymbol x_i+b\vert\\ \hat{\gamma}_{2i}=\lambda\vert\boldsymbol w^T\boldsymbol x_i+b\vert \end{cases} {γ^1i=wTxi+bγ^2i=λwTxi+b,函数间隔 γ ^ 2 i = λ γ ^ 1 i \hat{\gamma}_{2i}=\lambda\hat{\gamma}_{1i} γ^2i=λγ^1i

\qquad
∙ \quad\bullet  几何间隔 ( geometricl margin ) (\text{geometricl margin}) (geometricl margin)

γ i = y i r i = y i ( w T x i + b ) ∥ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ \qquad\qquad \gamma_i=y_ir_i=\dfrac{y_i(\boldsymbol w^T\boldsymbol x_i+b)}{\Vert\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} γi=yiri=wyi(wTxi+b)=wwTxi+b

几何间隔就是“训练样本 x i \boldsymbol x_i xi 到分类面的垂直距离”,也就是“规范化的函数间隔”。
 
上例中, { γ 1 i = γ ^ 1 i ∥ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ γ 2 i = γ ^ 2 i ∥ λ w ∥ = λ ∣ w T x i + b ∣ ∥ λ w ∥ = ∣ w T x i + b ∣ ∥ w ∥ \begin{cases}\gamma_{1i}=\dfrac{\hat{\gamma}_{1i}}{\Vert\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} \\ \\\gamma_{2i}=\dfrac{\hat{\gamma}_{2i}}{\Vert\lambda\boldsymbol w\Vert}=\dfrac{\lambda\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\lambda\boldsymbol w\Vert}=\dfrac{\vert\boldsymbol w^T\boldsymbol x_i+b\vert}{\Vert\boldsymbol w\Vert} \end{cases} γ1i=wγ^1i=wwTxi+bγ2i=λwγ^2i=λwλwTxi+b=wwTxi+b,几何间隔 γ 1 i = γ 2 i \gamma_{1i}=\gamma_{2i} γ1i=γ2i,仍然相等。

\qquad 显然,函数间隔几何间隔之间的关系为:

γ = γ ^ ∥ w ∥ \qquad\qquad\textcolor{crimson}{\gamma=\dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert}} γ=wγ^

\qquad
∙ \quad\bullet  以最大化训练样本的几何间隔为目标函数,并定义约束最优化问题

\qquad 约束最优化问题(1)

max ⁡ w , b   γ   s . t .     y i ( w T x i + b ) ∥ w ∥ ≥ γ , ∀   x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\max_{\boldsymbol w,b}\ \gamma\\ &\ s.t.\ \ \ \dfrac{y_i(\boldsymbol w^T\boldsymbol x_i+b)}{\Vert\boldsymbol w\Vert}\ge \gamma,\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmax γ s.t.   wyi(wTxi+b)γ, xi

也就是,在确保所有训练样本到分类面的垂直距离都大于 γ \gamma γ 的前提下,尽可能让(几何)间隔最大。

\qquad 利用两种间隔之间的关系 γ = γ ^ ∥ w ∥ \gamma=\dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert} γ=wγ^,在约束最优化问题(1)中使用函数间隔 γ ^ \hat{\gamma} γ^ 来描述几何间隔 γ \gamma γ,也就是

\qquad 约束最优化问题(2)

max ⁡ w , b   γ ^ ∥ w ∥   s . t .     y i ( w T x i + b ) ≥ γ ^ , ∀   x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{\hat{\gamma}}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat{\gamma},\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmax wγ^ s.t.   yi(wTxi+b)γ^, xi

\qquad  
\qquad 考虑满足约束最优化问题(2)的同一个分类面的两种表示 H 1 : ( w , b ) \mathcal H_1:(\boldsymbol w,b) H1:(w,b) H 2 : ( λ w , λ b ) \mathcal H_2:(\lambda\boldsymbol w,\lambda b) H2:(λw,λb),对于任一训练样本 x i \boldsymbol x_i xi 而言( λ > 0 \lambda>0 λ>0),那么:

\qquad H 1 :   w T x + b = 0 \quad\textcolor{firebrick}{\mathcal H_1}:\ \boldsymbol w^T\boldsymbol x+b=0 H1: wTx+b=0   (函数间隔为 γ ^ = ∣ w T x i + b ∣ \hat\gamma=\vert\boldsymbol w^T\boldsymbol x_i+b\vert γ^=wTxi+b

⟹ { 目标函数值: γ ^ ∥ w ∥ 约束函数:  y i ( w T x i + b ) ≥ γ ^ , ∀   x i \qquad\qquad\quad\Longrightarrow\quad\begin{cases}目标函数值:\quad\dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert}\\ 约束函数: \quad y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat\gamma,\quad \forall\ \boldsymbol x_i\end{cases} 目标函数值:wγ^约束函数: yi(wTxi+b)γ^, xi

\qquad H 2 :   λ w T x + λ b = 0 \quad\textcolor{firebrick}{\mathcal H_2}:\ \lambda\boldsymbol w^T\boldsymbol x+\lambda b=0 H2: λwTx+λb=0 (函数间隔为 λ γ ^ \lambda\hat\gamma λγ^

⟹ { 目标函数值: λ γ ^ ∥ λ w ∥ 约束函数:  y i λ ( w T x i + b ) ≥ λ γ ^ , ∀   x i \qquad\qquad\quad\Longrightarrow\quad\begin{cases}目标函数值:\quad\dfrac{\lambda\hat\gamma}{\Vert\lambda\boldsymbol w\Vert}\\ 约束函数: \quad y_i\lambda(\boldsymbol w^T\boldsymbol x_i+b) \ge \lambda\hat\gamma,\quad \forall\ \boldsymbol x_i\end{cases} 目标函数值:λwλγ^约束函数: yiλ(wTxi+b)λγ^, xi
\qquad
\qquad 显然,权值 ( w , b ) (\boldsymbol w,b) (w,b) 与其同比例的缩放值 ( λ w , λ b ) (\lambda\boldsymbol w,\lambda b) (λw,λb) 对于约束最优化问题(2)而言是没有影响的。

\qquad
∙ \quad\bullet  构造凸二次规划问题

\qquad 约束最优化问题(2)中,可以简单地取函数间隔 γ ^ = 1 \hat\gamma=1 γ^=1

假设待求解的权值为 ( w , b ) (\boldsymbol w,b) (w,b), 样本 x \boldsymbol x x w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 的几何间隔为 γ ^ ∥ w ∥ \dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert} wγ^
函数间隔 γ ^ = 1 \hat\gamma=1 γ^=1 时的几何间隔写为 1 ∥ λ ′ w ∥ \dfrac{1}{\Vert\lambda^{\prime}\boldsymbol w\Vert} λw1,也就是 ( w , b ) (\boldsymbol w,b) (w,b) 缩放为了 ( λ ′ w , λ ′ b ) ,   λ ′ = 1 / γ (\lambda^{\prime}\boldsymbol w,\lambda^{\prime}b),\ \lambda^{\prime}=1/\gamma (λw,λb), λ=1/γ
w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0 λ ′ w T x + λ ′ b = 0 \lambda^{\prime}\boldsymbol w^T\boldsymbol x+\lambda^{\prime}b=0 λwTx+λb=0 是同一个分类面

\qquad 那么,约束最优化问题(2)就可以写为:

max ⁡ w , b   γ ^ ∥ w ∥   s . t .     y i ( w T x i + b ) ≥ γ ^ ,   ∀   x i ⟹ γ ^ = 1 max ⁡ w , b   1 ∥ w ∥   s . t .     y i ( w T x i + b ) ≥ 1 ,   ∀   x i \qquad\qquad\textcolor{darkblue}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{\hat\gamma}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge \hat\gamma,\ \forall\ \boldsymbol x_i\end{aligned}}\quad\overset{\hat\gamma=1}\Longrightarrow\qquad\textcolor{royalblue}{\begin{aligned}&\max_{\boldsymbol w,b}\ \dfrac{1}{\Vert\boldsymbol w\Vert}\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\ \forall\ \boldsymbol x_i\end{aligned}} w,bmax wγ^ s.t.   yi(wTxi+b)γ^,  xiγ^=1w,bmax w1 s.t.   yi(wTxi+b)1,  xi

\qquad
\qquad 又由于 max ⁡   1 ∥ w ∥ ⟺ min ⁡   1 2 ∥ w ∥ 2 \max\ \dfrac{1}{\Vert\boldsymbol w\Vert}\Longleftrightarrow\min\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2 max w1min 21w2,因此可以构造出一个凸二次规划问题

\qquad 约束最优化问题(3)

min ⁡ w , b   1 2 ∥ w ∥ 2   s . t .     y i ( w T x i + b ) ≥ 1 , ∀   x i \qquad\qquad\qquad\textcolor{indigo}{\begin{aligned}&\min_{\boldsymbol w,b}\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\quad \forall\ \boldsymbol x_i\end{aligned}} w,bmin 21w2 s.t.   yi(wTxi+b)1, xi

\qquad

3. 支持向量

\qquad 支持向量 ( support vector ) (\text{support\ vector}) (support vector) 是指距离分类面最近的训练样本(红色 + 点),两个(红色点线)超平面 w T x + b = 1 \boldsymbol w^T\boldsymbol x+b=1 wTx+b=1 w T x + b = − 1 \boldsymbol w^T\boldsymbol x+b=-1 wTx+b=1 之间的距离,称为间隔 ( margin ) (\text{margin}) (margin)
\qquad 在这里插入图片描述
\qquad 考察该凸二次规划最优化问题

min ⁡ w , b   1 2 ∥ w ∥ 2   s . t .     y i ( w T x i + b ) ≥ 1 , ∀   x i \qquad\qquad\qquad\begin{aligned}&\min_{\boldsymbol w,b}\ \dfrac{1}{2}\Vert\boldsymbol w\Vert^2\\ &\ s.t.\ \ \ y_i(\boldsymbol w^T\boldsymbol x_i+b) \ge 1,\quad \forall\ \boldsymbol x_i\end{aligned} w,bmin 21w2 s.t.   yi(wTxi+b)1, xi

\qquad 支持向量也是使得约束条件的等式成立的点,即: y ( w T x + b ) = 1 y(\boldsymbol w^T\boldsymbol x+b)=1 y(wTx+b)=1。在线性可分的情况下,选择不同的点作为支持向量,就可以确定不同的分离超平面 w T x + b = 0 \boldsymbol w^T\boldsymbol x+b=0 wTx+b=0

  • (正例的)支持向量 x i , y i = + 1 :   y i ( w T x i + b ) = 1 ⇒ H 1 : w T x i + b = 1 \boldsymbol x_i,y_i=+1:\ y_i(\boldsymbol w^T\boldsymbol x_i+b)=1 \qquad\Rightarrow\quad H_1:\boldsymbol w^T\boldsymbol x_i+b=1 xi,yi=+1: yi(wTxi+b)=1H1:wTxi+b=1
    其余的 (正例的)训练样本满足 w T x i + b > 1 \boldsymbol w^T\boldsymbol x_i+b>1 wTxi+b>1
  • (负例的)支持向量 x j , y j = − 1 : y j ( w T x j + b ) = 1 ⇒ H 2 : w T x j + b = − 1 \boldsymbol x_j,y_j=-1:y_j(\boldsymbol w^T\boldsymbol x_j+b)=1 \qquad\Rightarrow\quad H_2:\boldsymbol w^T\boldsymbol x_j+b=-1 xj,yj=1:yj(wTxj+b)=1H2:wTxj+b=1
    其余的 (负例的)训练样本满足 w T x i + b < − 1 \boldsymbol w^T\boldsymbol x_i+b<-1 wTxi+b<1
  • 两个超平面 H 1 H_1 H1 H 2 H_2 H2 之间的间隔为 2 ∥ w ∥ \dfrac{2}{\Vert\boldsymbol w\Vert} w2

\qquad
\qquad
【写在最后】SVM的资料太多了,越写越觉得没什么特别的内容值得去写。攒在草稿箱里太久,发出来就当留个记录吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/199656.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

命令模式 rust和java实现

文章目录 命令模式介绍javarustrust仓库 命令模式 命令模式&#xff08;Command Pattern&#xff09;是一种数据驱动的设计模式。请求以命令的形式包裹在对象中&#xff0c;并传给调用对象。调用对象寻找可以处理该命令的合适的对象&#xff0c;并把该命令传给相应的对象&…

梦极光(ez_re?)

ez_re 先查壳看看&#xff0c;没有壳 32位 我先说说这道题 打开分析找到主函数 在这里就是flag了&#xff0c;用十六进制转ascii码 我们先运行这个程序看看 我想说说我的想法 首先没看出来这里是十六进制转ascii码其次41D538数组用来干啥来的&#xff1f;题目里面给出的请…

untiy 配置iis服务器来打开webgl

最简单的方法是不需要配置服务器&#xff0c;打包的时候直接build and run&#xff0c;但是有时候如果我们需要调整js的内容&#xff0c;会很不方便&#xff0c;所以配置一个iis服务器还是很有必要的 首先要开启iis服务 控制面板&#xff0c;查看方式选类型&#xff0c;点击程…

android viewpager 禁止滑动

android viewpager 禁止滑动 前言一、viewpager 禁止滑动是什么&#xff0c;有现成方法吗&#xff1f;二、使用setOnTouchListener三、使用自定义viewpager总结 前言 本文介绍了本人有一个相关的需求需要实现这一功能&#xff0c;在过程中发现自己之前没做过&#xff0c;然后记…

用C++和python混合编写数据采集程序?

之前看过一篇文章&#xff0c;主要阐述的就是多种语言混合编写爬虫程序&#xff0c;结合各种语言自身优势写一个爬虫代码是否行得通&#xff1f;觉得挺有意思的&#xff0c;带着这样的问题&#xff0c;我尝试着利用我毕生所学写了一段C和python混合爬虫程序&#xff0c;目前运行…

基于Spring Boot的疫苗接种系统-计算机毕设 附源码 32315

基于Spring Boot的疫苗接种系统 摘 要 预防预接种工作实行网络信息化管理&#xff0c;是我国免疫规划工作发展的需要。接种信息实行网络信息化不仅是预防接种工作步入了一个新的台阶&#xff0c;更重要的是解决了多年疫苗接种过程种&#xff0c;免疫接种剂次不清&#xff0c;难…

2023-简单点-yolox-pytorch代码解析(一)-nets/darknet.py

yolox-pytorch: nets/darknet.py yolox网络结构yolox-pytorch目录今天解析注释net/darknet.pyFocusBaseConvDWConvSPPBottleneckDarknet未完待续。。。 yolox网络结构 yolox-pytorch目录 今天解析注释net/darknet.py #!/usr/bin/env python3 # 指定使用python3来执行此脚本 …

电子签名软件,在教育行业中如何应用?

电子签名软件简化签署流程&#xff0c;降低签署门槛&#xff0c;让更多人便捷地参与到签署中来。 微签作为国内电子签名软件的拓荒者之一&#xff0c;拥有19年的研发应用经验&#xff0c;提供专业的企业电子签名服务。微签的电子签名软件广泛应用于审批场景&#xff0c;实现高…

win系列:电脑设置关闭屏幕和休眠时间不起作用解决方案

电脑设置关闭屏幕和休眠时间不起作用解决方案 一. 笔记本电脑30s自动锁屏&#xff0c;怎么设置都没用?方法一&#xff1a;使用快捷键方法二&#xff1a;开始菜单设置如果需要对锁屏进行背景等的设置&#xff0c;建议你采用这个方法来进行。方法三&#xff1a;控制面板设置怎么…

从0开始学习JavaScript--JavaScript 箭头函数

JavaScript的现代语法&#xff0c;箭头函数&#xff08;Arrow Functions&#xff09;是一个不可忽视的重要部分。它们不仅提供了更简洁的语法&#xff0c;还改变了函数的作用域规则。在这篇文章中&#xff0c;将深入研究JavaScript箭头函数的概念、语法、用法以及它们与传统函数…

使用Git客户端向gitee免密推送项目代码(保姆级流程哦)

1.进入Git官网手动下载git的客户端可执行程序 一路next即可 2.找到安装路径下的3.进入git-bash 根据如下的代码一次执行只需要修改对应的username和自己再gitee中绑定的邮箱 4.分发私钥到邮箱 产生私钥的时候回车三次即可&#xff1b;查看私钥如下图及正常&#xff1b; 5.进…

C++设计模式——工厂模式 :简单工厂、工厂方法、抽象工厂

工厂模式可以分为三种&#xff0c;简单工厂模式&#xff0c;工厂方法模式和抽象工厂模式。 那么&#xff0c;这三种工厂模式长啥样&#xff0c;又为啥会衍生出这三种模式来呢&#xff1f;本篇和大家一起来学习总结一下。 一、简单工厂模式 简单工厂SimpleFactory 负责创建所有…

Zabbix 6 详细安装部署教程

目录 一、安装 MySQL 数据库 二、安装 zabbix 监控平台 三、编辑配置文件 四、启动服务 五、zabbix-web 安装 zabbix web 出图展示乱码问题解决方案 zabbix 的安装部署非常简单&#xff0c;官方提供了四种安装途径&#xff0c;分别是二进制 rpm 包安装方式、源码安装方…

使用 DMA 在 FPGA 中的 HDL 和嵌入式 C 之间传输数据

使用 DMA 在 FPGA 中的 HDL 和嵌入式 C 之间传输数据 该项目介绍了如何在 PL 中的 HDL 与 FPGA 中的处理器上运行的嵌入式 C 之间传输数据的基本结构。 介绍 鉴于机器学习和人工智能等应用的 FPGA 设计中硬件加速的兴起&#xff0c;现在是剥开几层“云雾”并讨论 HDL 之间来回传…

微信小程序仿网易严选(附精选源码32套,涵盖商城团购等)

商城主要实现的功能 首页、专题、分类、购物车、我的小程序授权登陆获取用户信息首页包含品牌制造页、品牌制造详情页面、新品首发页面、人气推荐页面、各分类列表商品详情页面&#xff0c;包含常见问题、大家都在看商品列表、加入购物车、收藏商品、立即购买、下订单、选择收…

在表格中显示字典的内容(根据后端返回的数据)vue3

进入页面&#xff0c;调接口&#xff0c;后端返回数据&#xff0c;indexType为0或者1&#xff0c;要用这个数据显示字典的内容 用插槽拿到数据 写一个函数&#xff0c;在模板中使用 const { proxy } getCurrentInstance(); // 字典-指标类型 const { index_type } proxy.u…

6.保留两位小数【2023.11.28】

1.问题描述 题中将给出一个具有许多小数位的浮点数&#xff0c;请将这个数字保存至小数点后两位&#xff0c;并输出。 2.解决思路 输入一个浮点数。 程序将浮点数保留两位小数并输出。 例如&#xff1a; formatted_float "{:.2f}".format(input_float)3.代码实…

echarts图表滚动条带动页面窗口滚动条的问题

网上搜了很多方法不管用&#xff0c;后来发现每次滚动echarts或者左右滑动echarts下方都会报错&#xff0c;报错提示如下&#xff0c;看看你们的图表是否这样报错&#xff1a; 报错信息如下&#xff1a;Unable to preventDefault inside passive event listener invocation 原…

三大录屏软件推荐,让你轻松录制屏幕

录屏软件的应用变得越来越广泛&#xff0c;无论是记录屏幕上的内容以方便日后查阅&#xff0c;还是与他人分享操作过程&#xff0c;录屏软件都发挥着重要作用。然而&#xff0c;市面上的录屏软件种类繁多&#xff0c;质量参差不齐。那有没有好用的录屏软件推荐呢&#xff1f;在…

金字塔原理

金字塔原理 来自于麦肯锡公司的第一位女性咨询顾问芭芭拉•明托的著作《金字塔原理》。 原理介绍 此原理是一种重点突出、逻辑清晰、主次分明的逻辑思路、表达方式和规范动作。 金字塔的基本结构是&#xff1a;中心思想明确&#xff0c;结论先行&#xff0c;以上统下&#xff…