数学建模-基于LightGBM和BP神经网络的互联网招聘需求分析与预测

基于LightGBM和BP神经网络的互联网招聘需求分析与预测

整体求解过程概述(摘要)

  就业是民生之本,是发展之基,也是安国之策。2020 年新冠肺炎疫情的爆发,稳就业成为应对疫情、稳定社会的重要保障之一。随着数据新动能的发展,互联网招聘为招聘者和应聘者提供不限于时空的全局视角,因此本文从该角度出发对招聘者和应聘者需求进行统计分析预测,以期缓解就业难、招聘难的困境。
  本文基于近年来各在线招聘网站所发布的招聘数据并结合数据新动能下转型升级的三个金融行业、互联网行业、生产制造行业,采用 Pearson 相关系数检验初步筛选后运用灰色关联分析进一步进行指标筛选,最后对企业招聘中招聘者关注的浏览量运用 LightGBM 模型进行浏览量特征重要性分析,对就业形势中应聘者关注的薪资运用 BP 神经网络预测模型对于薪资进行预测,并进行模型精度对比,得出数据新动能下三个行业的薪资统计分析预测。
  经研究得出关于企业招聘浏览量,金融行业薪资水平,互联网行业薪资水平,生产制造行业薪资水平的影响因素及重要程度。基于以上分析结论,本文在互联网招聘市场中对招聘者与应聘者需求提出以下对策建议:第一,对于企业,招聘者应根据岗位浏览量合理设置招聘要求;第二,对于金融行业,应聘者应根据学历因素合理考虑就业地域;第三,对于互联网行业,应聘者应根据学历因素合理考虑公司性质;第四,对于生产制造行业,应聘者应根据公司所在地合理考虑公司性质。

问题分析

  基于当代数字经济大环境背景,面对当前互联网市场应聘者和招聘者需求不对称的现状,本文运用近年来各在线招聘网站所发布的招聘数据并结合数据新动能下转型升级的三个金融行业、互联网行业、生产制造行业,采用 Pearson 相关系数分析初步筛选后运用灰色关联分析进一步进行维度筛选,最后对企业招聘中招聘者关注的浏览量运用 LightGBM 模型进行特征重要性分析,对就业形势中应聘者关注的薪资运用 BP 神经网络预测模型对于薪资进行预测,并进行模型检验与修正,得出新动能下三个行业的薪资和浏览量的分析与预测。
在这里插入图片描述

指标的选取与数据的处理

  (一)数据来源
  本文数据通过对某数据平台的数据进行爬取,总共得到 1007894 条数据。数据预处理以 excel 为主,Python、R 为辅,完成原始数据去重区空以及数值转换等数据预处理工作之后进行分层随机抽样得到剩下 40000 条数据进行统计分析。对于异常值的处理,学历、职位、行业等因素使用删除异常值方法处理,经验年数、工资上下限因素使用计算平均值方法进行处理。分层抽样法,也叫类型抽样法。将总体单位按其属性特征分成若干类型或层,然后在类型或层中随机抽取样本单位。分层抽样法的特点是通过划类分层,增大了各类分层抽样中单位间的共同性,容易抽出具有代表性的调查样本。该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况。分层随机抽样的程序是把总体各单位分成两个或两个以上的相互独立且各具特点的完全的组,再从两个或两个以上的组中分别进行随机抽样。分组的标志或特点与所关心的总体特征相关。“所学非所用”不利于充分发挥人力资本的潜在价值(郭睿,2019),本文以学历作为属性特征进行分层,将不同学历分出不同层,按各学历占总数据的比例在每一层中随机抽样,得出 40000 条数据。
  并通过划分行业来分别选取每个行业中的指标进行分析预测,金融行业的发展是一个国家经济发展的重要支撑(高景文,2019),互联网行业则为数字化时代背景下一个重要的行业支撑(周蕴慧,2021),生产制造行业的转型升级也是当今时代面临的重大课题(江小涓,2020),这三个行业都对数据新动能背景下招聘与就业需求不对称的统计分析研究具有一定意义,因此本文选取这三种行业进行统计分析预测。
  而对于大多数互联网应聘者而言,薪资是众多被考虑因素中的重中之重,是其劳动回报的直接体现(Kristin L ,2018),对于企业而言,应聘者的薪资与其经营的利润以及成本是直接相关的关系。因此选取三个行业薪资平均值与其他指标进行分析。

  (二)指标选取
  1. Pearson 相关系数检验
  Pearson 相关系数是用协方差除以两个变量的标准差得到的,虽然协方差能反映两个随机变量的相关程度(协方差大于 0 的时候表示两者正相关,小于 0 的时候表示两者负相关),但是协方差值的大小并不能很好地度量两个随机变量的关联程度,对于标准化后的数据求欧氏距离平方并经过简单的线性变化,也就是Pearson 系数,我们一般用欧式距离来衡量向量的相似度,但欧式距离无法考虑不同变量间取值的差异。加之,Pearson 相关系数适用于高维度检验,而未经升级的欧式距离以及 cosine 相似度,对变量的取值范围是敏感的,在使用前需要进行适当的处理。因此在对变量间进行相关性检验时,本文优先采用 Pearson 相关系数检验去研究经验,学历,公司所在地,公司性质,职位分别和薪资平均值之间的相关关系,使用 Pearson 相关系数去表示相关关系的强弱情况。具体分析可知:
  ①金融行业:经验、学历、职位、公司所在地呈现显著性
在这里插入图片描述
  ②互联网行业:经验、学历、职位、公司所在地、公司性质呈现显著性
在这里插入图片描述
  ③生产制造行业:经验、学历、公司所在地、公司性质呈现显著性

在这里插入图片描述
  2. 灰色关联分析
  基于 Pearson 相关系数检验得出的结果,本文进一步对具有显著性的各个特征值进行选取。运用灰色关联分析对于研究指标进行进一步选取,研究各因素对薪资的影响大小关系,得出结果如下:
  ①金融行业:公司所在地、职位

在这里插入图片描述
  从上表可以看出:针对本次 4 个评价项,公司所在地的综合评价最高(关联度为:0.989),其次是职位(关联度为:0.670)。
  ②互联网行业:学历、公司性质
在这里插入图片描述
  从上表可以看出:针对本次 5 个评价项,学历的综合评价最高(关联度为:0.928),其次是公司性质(关联度为:0.909)。
  ③生产制造行业:公司所在地、公司性质

在这里插入图片描述
  从上表可以看出:针对本次 4 个评价项,公司所在地的综合评价最高(关联度为:0.959),其次是公司性质(关联度为:0.953)

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

%% 网络测试
an=sim(net,inputn_test); %用训练好的模型进行仿真
test_simu=mapminmax('reverse',an,outputps); % 预测结果反归一化
error=test_simu-output_test; %预测值和真实值的误差
%%真实值与预测值误差比较
figure
plot(output_test,'bo-','linewidth',1.2)
hold on
plot(test_simu,'r*-','linewidth',1.2)
legend('期望值','预测值')
xlabel('测试样本编号'),ylabel('指标值')
title('BP 测试集预测值和期望值的对比')
set(gca,'fontsize',12)
igure
plot(error,'ro-','linewidth',1.2)
xlabel('测试样本编号'),ylabel('预测偏差')
title('BP 神经网络测试集的预测误差')
set(gca,'fontsize',12)
%计算误差
[~,len]=size(output_test);
SSE1=sum(error.^2);
MAE1=sum(abs(error))/len;
MSE1=error*error'/len;
RMSE1=MSE1^(1/2);
MAPE1=mean(abs(error./output_test));
r=corrcoef(output_test,test_simu); %corrcoef 计算相关系数矩阵,包括自相关和
互相关系数
R1=r(1,2); 
%% 初始化
clear
close all
clc
format short
%% 读取读取
data=xlsread('数据总.xlsx','Sheet1','A1:F18528'); %%使用 xlsread 函数读取 EXCEL
中对应范围的数据即可 
%输入输出数据
input=data(:,1:end-1); %data 的第一列-倒数第二列为特征指标
output=data(:,end); %data 的最后面一列为输出的指标值
N=length(output); %全部样本数目
testNum=50; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%% 划分训练集、测试集
input_train = input(1:trainNum,:)';
output_train =output(1:trainNum)';
input_test =input(trainNum+1:trainNum+testNum,:)';
output_test =output(trainNum+1:trainNum+testNum)';
%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
[outputn,outputps]=mapminmax(output_train);
inputn_test=mapminmax('apply',input_test,inputps);
%% 获取输入层节点、输出层节点个数
inputnum=size(input,2);
outputnum=size(output,2);
disp('/')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')
%确定隐含层节点个数
%采用经验公式 hiddennum=sqrt(m+n)+a,m 为输入层节点个数,n 为输出层节点
个数,a 一般取为 1-10 之间的整数
MSE=1e+5; %初始化最小误差
transform_func={'tansig','purelin'}; %激活函数
train_func='trainlm'; %训练算法
for 
hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10
%构建网络
net=newff(inputn,outputn,hiddennum,transform_func,train_func);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
% 网络训练
net=train(net,inputn,outputn);
an0=sim(net,inputn); %仿真结果
mse0=mse(outputn,an0); %仿真的均方误差
disp([' 隐含层节点数为 ',num2str(hiddennum),' 时,训练集的均方误差为:
',num2str(mse0)])
%更新最佳的隐含层节点
if mse0<MSE
MSE=mse0;
hiddennum_best=hiddennum;
end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',相应的均方误差为:
',num2str(MSE)])
%% 构建最佳隐含层节点的 BP 神经网络
net=newff(inputn,outputn,hiddennum_best,transform_func,train_func);
% 网络参数
net.trainParam.epochs=1000; % 训练次数
net.trainParam.lr=0.01; % 学习速率
net.trainParam.goal=0.000001; % 训练目标最小误差
%% 网络训练
net=train(net,inputn,outputn);
%% 网络测试
an=sim(net,inputn_test); %用训练好的模型进行仿真
test_simu=mapminmax('reverse',an,outputps); % 预测结果反归一化
error=test_simu-output_test; %预测值和真实值的误差
%%真实值与预测值误差比较
figure
plot(output_test,'bo-','linewidth',1.2)
hold on
plot(test_simu,'r*-','linewidth',1.2)
legend('期望值','预测值')
xlabel('测试样本编号'),ylabel('指标值')
title('BP 测试集预测值和期望值的对比')
set(gca,'fontsize',12)
figure
plot(error,'ro-','linewidth',1.2)
xlabel('测试样本编号'),ylabel('预测偏差')
title('BP 神经网络测试集的预测误差')
set(gca,'fontsize',12)
%计算误差
[~,len]=size(output_test);
SSE1=sum(error.^2);
MAE1=sum(abs(error))/len;
MSE1=error*error'/len;
RMSE1=MSE1^(1/2);
MAPE1=mean(abs(error./output_test));
r=corrcoef(output_test,test_simu); %corrcoef 计算相关系数矩阵,包括自相关和
互相关系数
R1=r(1,2); 
disp(' ')
disp('/')
disp('预测误差分析...')
disp(['误差平方和 SSE 为: ',num2str(SSE1)])
disp(['平均绝对误差 MAE 为: ',num2str(MAE1)])
disp(['均方误差 MSE 为: ',num2str(MSE1)])
disp(['均方根误差 RMSE 为: ',num2str(RMSE1)])
disp(['平均百分比误差 MAPE 为: ',num2str(MAPE1*100),'%'])
disp(['相关系数 R 为: ',num2str(R1)])
%打印结果
disp(' ')
disp('/')
disp('打印测试集预测结果...')
disp([' 编号 实际值 预测值 误差'])
for i=1:len
disp([i,output_test(i),test_simu(i),error(i)])
end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/199539.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是Geo Trust OV证书

一、GeoTrust OV证书的介绍 GeoTrust OV证书是由GeoTrust公司提供的SSL证书&#xff0c;它是一种支持OpenSSL的数字证书&#xff0c;具有更高的安全性和可信度。GeoTrust是全球领先的网络安全解决方案提供商&#xff0c;为各类用户提供SSL证书和信任管理服务。GeoTrust OV证书…

数据结构-交换排序(冒泡、快速)

冒泡排序 基本思想 先将第一个记录与第二个记录比较&#xff0c;将较大的记录放到第二个位置上&#xff0c;之后再将第二个记录与第三 个记录比较&#xff0c;将较大的记录放到第三个位置上&#xff0c;如此类推&#xff0c;知道比较完最后一个位置&#xff0c;此时注意到 …

在Rust中处理命令行参数和环境变量

1.摘要 Rust的命令行和环境变量处理在标准库中提供了一整套实现方法, 在本文中除了探索标准库的使用方法之外, 也在不断适应Rust独有的语法特点。在本文中, 我们通过标准库函数的返回值熟悉了迭代器的使用方法, 操作迭代器精确控制保存的内容, 包括字符串和键值对的使用方法。…

GUI加分游戏

需求目标 这个简单的游戏窗口包含一个得分标签和一个按钮。每次点击按钮时&#xff0c;得分增加1&#xff0c;并更新得分标签的显示。 效果 源码 /*** author lwh* date 2023/11/28* description 这个简单的游戏窗口包含一个得分标签和一个按钮。每次点击按钮时&#xff0c;…

Matlab进阶绘图第34期—双三角热图

在《Matlab进阶绘图第29期—三角热图》中&#xff0c;我分享过三角热图的绘制模板。 然而&#xff0c;有的时候&#xff0c;为了节省版面或者方便对比等&#xff0c;需要在一张图上绘制两个三角热图的组合形式&#xff0c;且每个三角热图使用不同的配色方案&#xff0c; 由于…

2023/11/28JAVAweb学习

查找哪个进程占用了该端口号 跳过某一个阶段

ssm购物商城系统

摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管理就很关键。因此商城购物信息的…

天软高频时序数据仓库

1天软高频时序数仓方案架构 天软高频时序数据仓库是深圳天软科技开发有限公司专为金融用户提供的专业高频行情数据处理方案&#xff0c;集数据接入、检查、处理、存储、查询、订阅、计算于一体。 方案支持各类系统的实时行情、非实时行情接入&#xff1b;还支持压缩存储、分布式…

用CHAT总结费曼学习法的关键

问CHAT&#xff1a;费曼学习法的关键 CHAT回复&#xff1a;费曼学习法是由著名物理学家理查德费曼所发明的一种学习方法&#xff0c;旨在以深入理解为目标&#xff0c;帮助自己学习新的知识和技能。 费曼学习法有四个关键步骤&#xff1a; 1. 学习&#xff1a;首先&#xff0…

使字符串的单词倒序输出表示

题目 任务描述 本关任务&#xff1a;请实现函数 revWordoder&#xff0c;能够将 pa 指向的单词表字符串中的所有单词&#xff0c;按相反顺序放入 pb&#xff0c;同时去除多余的空格&#xff0c;单词之间只留一个空格. 例如 pa 中为 red blue, 则调用函数后&#xff0c;pb 中为b…

Linux新加磁盘的完整步骤

目录 新加磁盘的完整步骤磁盘分区磁盘文件命名经典分区方案fdiskparted 分区格式化挂载分区 新加磁盘的完整步骤 物理连接 --> 分区 --> 格式化 --> 挂载 --> 更新/etc/fstab文件实现永久挂载 磁盘分区 主分区primary用来安装操作系统、存放数据&#xff0c;可以…

网络篇---第六篇

系列文章目录 文章目录 系列文章目录前言一、HTTP1.0、HTTP1.1、HTTP2.0的关系和区别二、说说HTTP协议与TCP/IP协议的关系三、如何理解HTTP协议是无状态的?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章…

Maven——坐标和依赖

Maven的一大功能是管理项目依赖。为了能自动化地解析任何一个Java构件&#xff0c;Maven就必须将它们唯一标识&#xff0c;这就依赖管理的底层基础——坐标。将详细分析Maven坐标的作用&#xff0c;解释其每一个元素&#xff1b;在此基础上&#xff0c;再介绍如何配置Maven&…

中小型工厂如何进行数字化转型

随着科技的快速发展和市场竞争的日益激烈&#xff0c;中小型工厂面临着诸多挑战。为了提高生产效率、降低成本、优化资源配置&#xff0c;数字化转型已成为中小型工厂发展的必经之路。中小型工厂如何进行数字化转型呢&#xff1f; 一、明确数字化转型目标 在进行数字化转型之前…

利用sql语句来统计用户登录数据的实践

目录 1 基本数据情况2 统计每个用户每个月登录次数3 将日期按月显示在列上4 总结 1 基本数据情况 当需要对用户登录情况进行统计时&#xff0c;SQL是一个非常强大的工具。通过SQL&#xff0c;可以轻松地从数据库中提取和汇总数据&#xff0c;并以适合分析和报告的方式进行呈现…

Spring代理方式之静态、动态代理(JDK和CGlib动态代理)

目录 1、代理设计模式的概念 2、静态代理 3、动态代理&#xff08;JDK和CGlib动态代理&#xff09; 1. JDK动态代理是基于接口的代理&#xff08;Interface-based proxy&#xff09; 2. CGLIB代理是基于类的代理&#xff08;Class-based proxy&#xff09; ⭐比较&#x…

embeddings

“embeddings”的中文翻译是“嵌入”或“嵌入向量”。在自然语言处理&#xff08;NLP&#xff09;领域&#xff0c;通常被称为“词向量”或“词嵌入”&#xff0c;它是表示词汇或令牌的一种方式&#xff0c;通过将这些词汇或令牌映射到一个向量空间中的点&#xff0c;以捕捉它们…

Gin投票系统(2)

投票系统 数据库的建立 先分析需求&#xff0c;在sql中建立数据库&#xff0c;关于项目数据库如何建立可以在“goweb项目创建流程分析中看如何去建表” 成功后目前有四个表&#xff1a; vote&#xff0c;user&#xff0c;vote_opt,vote_opt_user 建立数据库&#xff0c;可以…

Web学习笔记

Web学习笔记 flask库前端基础超链接&#xff1a;空连接&#xff1a;图片&#xff1a;视频&#xff08;音频&#xff09;&#xff1a;嵌套使用列表表格格式化表格input表单系列 网络请求GET方式POST请求通过GET方式获取输入参数通过POST方式获取输入参数注册页面 CSS三种使用方式…

超卓航科聚国内外专家学者,共推冷喷涂技术的发展与应用

11月24日——26日&#xff0c;冷喷涂技术及其在增材制造中的应用专题会在襄阳召开&#xff0c;来自国内外200多名科技工作者齐聚一堂&#xff0c;共同交流冷喷涂技术的研究与应用。 本次专题研讨会由中国机械工程学会表面工程分会主办&#xff0c;湖北超卓航空科技股份有限公司…