【计算方法与科学建模】常微分方程初值问题的数值积分法:欧拉方法(向前Euler及其python实现)

文章目录

  • 一、数值积分法
    • 1. 一般步骤
    • 2. 数值方法
  • 二、欧拉方法(Euler Method)
    • 1. 向前欧拉法(前向欧拉法)
      • a. 基本理论
      • b. 典例解析
      • c. 算法实现

  常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。

一、数值积分法

1. 一般步骤

  1. 确定微分方程:

    • 给定微分方程组 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x))
  2. 确定初始条件:

    • 初值问题包含一个初始条件 y ( a ) = y 0 y(a) = y_0 y(a)=y0,其中 a a a 是定义域的起始点, y 0 y_0 y0 是初始值。
  3. 选择数值方法:

    • 选择适当的数值方法来近似解(需要考虑精度、稳定性和计算效率),常见的数值方法包括欧拉方法、改进的欧拉方法、Runge-Kutta 方法等。
  4. 离散化定义域:

    • 将定义域 [ a , b ] [a, b] [a,b] 分割为若干小步,即选择合适的步长 h h h。通常,较小的步长能够提高数值解的精度,但也增加计算成本。
  5. 数值迭代:

    • 使用选定的数值方法进行迭代计算:根据选择的方法,计算下一个点的函数值,并更新解。
  6. 判断停止条件:

    • 判断是否达到满足指定精度的近似解:可以使用某种误差估计方法,例如控制局部截断误差或全局误差。
  7. 输出结果:

    • 最终得到在给定定义域上满足初值问题的近似解。

2. 数值方法

  1. 欧拉方法(Euler Method):

    • 基本思想:根据微分方程的定义,使用离散步长逼近导数,进而逼近下一个点的函数值。
    • 公式: y n + 1 = y n + h f ( t n , y n ) y_{n+1} = y_n + h f(t_n, y_n) yn+1=yn+hf(tn,yn)
      其中, y n y_n yn是第 n n n 步的函数值, h h h是步长, f ( t n , y n ) f(t_n, y_n) f(tn,yn) 是在点 ( t n , y n ) (t_n, y_n) (tn,yn) 处的导数。
  2. 改进的欧拉方法(Improved Euler Method 或梯形法 Trapezoidal Rule):

    • 基本思想:使用两次近似来提高精度,首先使用欧拉方法计算中间点,然后用该点的导数估计值来计算下一个点。
    • 公式: y n + 1 = y n + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + h f ( t n , y n ) ) ] y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))] yn+1=yn+2h[f(tn,yn)+f(tn+1,yn+hf(tn,yn))]
  3. Runge-Kutta 方法:

    • 基本思想:通过多个阶段的计算来提高精度。其中最常见的是四阶 Runge-Kutta 方法。
    • 公式:
      k 1 = h f ( t n , y n ) k_1 = hf(t_n, y_n) k1=hf(tn,yn) k 2 = h f ( t n + h 2 , y n + k 1 2 ) k_2 = hf(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) k2=hf(tn+2h,yn+2k1) k 3 = h f ( t n + h 2 , y n + k 2 2 ) k_3 = hf(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) k3=hf(tn+2h,yn+2k2) k 4 = h f ( t n + h , y n + k 3 ) k_4 = hf(t_n + h, y_n + k_3) k4=hf(tn+h,yn+k3) y n + 1 = y n + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) yn+1=yn+61(k1+2k2+2k3+k4)

  这些方法中,步长 h h h 是一个关键参数,它决定了离散化的程度,选择合适的步长对于数值解的准确性和稳定性非常重要。

二、欧拉方法(Euler Method)

1. 向前欧拉法(前向欧拉法)

a. 基本理论

  1. 等距节点组:

    • { X n } \{X_n\} {Xn}被定义为区间 [ a , b ] [a, b] [a,b] 上的等距节点组,其中 X n = a + n h X_n = a + nh Xn=a+nh h h h 是步长, n n n 是节点索引,这样的离散化有助于数值计算。
  2. 向前差商近似微商:

    • 在节点 X n X_n Xn 处,通过向前差商 y ( X n + 1 ) − y ( X n ) h \frac{y(X_{n+1}) - y(X_n)}{h} hy(Xn+1)y(Xn) 近似替代微分方程 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x)) 中的导数项,得到 y ′ ( X n ) ≈ y ( X n + 1 ) − y ( X n ) h = f ( X n , y ( X n ) ) y'(X_n) \approx \frac{y(X_{n+1}) - y(X_n)}{h} = f(X_n, y(X_n)) y(Xn)hy(Xn+1)y(Xn)=f(Xn,y(Xn))
    • 这个近似通过将差商等于导数的思想,将微分方程转化为递推关系式。
  3. 递推公式:

    • 将上述近似公式改为等式,得到递推公式 y n + 1 = y n + h f ( X n , y n ) y_{n+1} = y_n + hf(X_n, y_n) yn+1=yn+hf(Xn,yn)
    • 这个公式是 Euler 方法的核心,通过这个公式可以逐步计算得到近似解的数值。
  4. 步骤解释:

    • n = 0 n=0 n=0 时,使用初始条件 y 0 y_0 y0 计算 y 1 y_1 y1
    • 然后,利用 y 1 y_1 y1 计算 y 2 y_2 y2,以此类推,得到 y n y_n yn,直到 n = N n=N n=N,其中 N N N 是节点数。
    • 这个过程形成了一个逐步逼近微分方程解的序列。
  5. 几何解释:

    • 在几何上,Euler 方法的求解过程可以解释为在积分曲线上通过连接相邻点的折线来逼近微分方程的解,因而被称为折线法
  6. 截断误差:

    • 通过 Taylor 展开,可以得到 Euler 方法的截断误差公式(忽略 h 2 h^2 h2 项) y ( x n + 1 ) = y ( x n ) + h f ( X n , y n ) + O ( h 2 ) y(x_{n+1}) = y(x_n) + hf(X_n, y_n) + O(h^2) y(xn+1)=y(xn)+hf(Xn,yn)+O(h2)
    • 这表明 Euler 方法的误差主要来自于 h h h 的一阶项,因此选择较小的步长可以提高方法的精度。

b. 典例解析

在这里插入图片描述

计算过程:

  1. 初始化: x 0 = 0 x_0 = 0 x0=0, y 0 = 1 y_0 = 1 y0=1.
  2. 计算 x 1 x_1 x1 y 1 y_1 y1
    x 1 = x 0 + h = 0.1 x_1 = x_0+h=0.1 x1=x0+h=0.1 y 1 = y 0 + h f ( x 0 , y 0 ) = 1 + 0.1 ⋅ ( y 0 − 2 x 0 y 0 ) = 1 + 0.1 ⋅ 1 = 1.1 y_1 = y_0 + h f(x_0, y_0) = 1 + 0.1 \cdot (y_0-\frac{2x_0}{y_0}) = 1 + 0.1 \cdot 1 = 1.1 y1=y0+hf(x0,y0)=1+0.1(y0y02x0)=1+0.11=1.1.
  3. 计算 x 2 x_2 x2 y 2 y_2 y2
    x 2 = x 1 + h = 0.2 x_2 = x_1+h=0.2 x2=x1+h=0.2 y 2 = y 1 + h f ( x 1 , y 1 ) = 1.1 + 0.1 ⋅ ( y 1 − 2 x 1 y 1 ) = 1.1 + 0.1 ⋅ ( 1.1 − 0.181819 ) = 1.191818 y_2 = y_1 + h f(x_1, y_1) = 1.1 + 0.1 \cdot (y_1-\frac{2x_1}{y_1}) = 1.1 + 0.1 \cdot (1.1-0.181819)= 1.191818 y2=y1+hf(x1,y1)=1.1+0.1(y1y12x1)=1.1+0.1(1.10.181819)=1.191818.
  4. 计算 x 3 x_3 x3 y 3 y_3 y3
    … … … … … … ……………… ………………

c. 算法实现

import numpy as np
import matplotlib.pyplot as plt


def forward_euler(f, y0, a, b, h):
    """
    使用向前欧拉法求解一阶常微分方程初值问题

    Parameters:
    - f: 函数,表示微分方程的右侧项,形式为 f(x, y)
    - y0: 初始条件,表示在 x=a 处的函数值
    - a: 区间起点
    - b: 区间终点
    - h: 步长

    Returns:
    - x_values: 区间 [a, b] 上的离散节点
    - y_values: 对应节点上的函数值的近似解
    """

    num_steps = int((b - a) / h) + 1  # 计算步数
    x_values = np.linspace(a, b, num_steps)  # 生成离散节点
    y_values = np.zeros(num_steps)  # 初始化结果数组

    y_values[0] = y0  # 设置初始条件

    # 使用向前欧拉法进行逐步迭代
    for i in range(1, num_steps):
        x = x_values[i - 1]
        y = y_values[i - 1]
        y_values[i] = y + h * f(x, y)

    return x_values, y_values


# 示例:求解 y' = y - 2x/y,初始条件 y(0) = 1 在区间 [0, 1] 上的近似解
def example_function(x, y):
    return y - 2*x/y


a, b = 0, 1  # 区间 [a, b]
y0 = 1  # 初始条件 y(0) = 1
h = 0.1  # 步长

x_values, y_values = forward_euler(example_function, y0, a, b, h)

# 绘制结果
plt.plot(x_values, y_values, label='Forward Euler')
plt.plot(x_values, np.sqrt(1+2*x_values), label='Exact Solution')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/196807.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2019年11月13日 Go生态洞察:Go.dev - Go开发者的新枢纽

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

函数式编程:简洁与效率的完美结合

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

Android : Fragment 传递数据 — 简单应用

示例图: 创建 Fragment new -> Fragment -> Fragment(Blank) MainActivity.java package com.example.fragmentdemo;import androidx.appcompat.app.AppCompatActivity; import androidx.fragment.app.FragmentManager; import andro…

基于Python+requests编写的自动化测试项目-实现流程化的接口串联

框架产生目的:公司走的是敏捷开发模式,编写这种框架是为了能够满足当前这种发展模式,用于前后端联调之前(后端开发完接口,前端还没有将业务处理完毕的时候)以及日后回归阶段,方便为自己腾出学(m…

浏览器兼容性问题及其解决方案

一、认识浏览器 四大内核: Blink、Gecko、WebKit、Trident (不再活跃) 主流浏览器: IE(Trident内核)、Firefox(火狐:Gecko内核)、Safari(苹果:webkit内核)、Google Chrome(谷歌:Blink内核)、Opera(欧朋:B…

如何通过低代码工具,提升运输行业的运营效率和服务质量

《中国数字货运发展报告》显示,2022年我国公路货运市场规模在5万亿元左右。其中,数字货运整体市场规模约为7000亿元,市场渗透率约为15%。而以小微企业为主的货运行业,却以小、散、乱的行业特征,承载着5万亿元左右的市场…

SEAM-STRESS

模型 PCM means ‘Pixel Correlation Module’ 辅助信息 作者未提供代码

【matlab程序】matlab使用箭头在图像上标注

【matlab程序】matlab使用箭头在图像上标注 clear;clc;close all;x0:1/10000:2*pi; ysin(x); figure plot(x,y,LineWidth,2) x_begin 1; x_end 2; y_begin 0; y_end 0.2;annotation(arrow,XY2Norm(X,[x_begin,x_end]),XY2Norm(Y,[y_begin,y_end]),LineWidth,2,Color,r); …

静态住宅IP代理实际应用:它的强大用途你知道吗?

静态住宅IP代理与动态IP代理相比,提供了更稳定的网络身份,使得企业在进行数据采集、区域定位营销和市场研究时更为高效。同时,它也是提高在线隐私保护和避免封禁的有效工具。 通过详细分析,你将能全面了解静态住宅IP代理的应用&a…

【Python+Appium】自动化测试框架

appium简介 Appium 是一个开源的、跨平台的测试框架,可以用来测试 Native App、混合应用、移动 Web 应用(H5 应用)等,也是当下互联网企业实现移动自动化测试的重要工具。Appium、Appium-desktop、Appium Client 的区别是 Appium …

同旺科技 USB 转 RS-485 适配器 -- 隔离型(定制款)

内附链接 1、USB 转 RS-485 适配器 隔离版主要特性有: ● 支持USB 2.0/3.0接口,并兼容USB 1.1接口; ● 支持USB总线供电; ● 支持Windows系统驱动,包含WIN10 / WIN11 系统32 / 64位; ● 支持Windows …

JSON详细教程

😊JSON详细教程 🚩JSON简介☃️JSON语法规则🔊JSON和JavaScript对象的区别 ☃️JSON数据类型字符串🔊数字🔊布尔值🔊数组🔊对象🔊Null ☃️JSON对象🔊访问JSON对象的值&a…

k8s部署jenkins

1.先决条件 1.因为国内的容器镜像加速器无法实时更新docker hub上的镜像资源.所以可以自己进行jenkins的容器镜像创建,. 2.这里用到了storageClass k8s的动态制备.详情参考: k8s-StoargClass的使用-基于nfs-CSDN博客 3.安装docker服务.(用于构建docker image) 2.构建jenki…

案例-某乎参数x-zse-96逆向补环境

文章目录 前言一、流程分析二、导出代码三、补环境总结 前言 本文章中所有内容仅供学习交流使用,不用于其他任何目的,不提供完整代码,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则…

Django回顾【二】

一、Web框架 Web框架(Web framework)是一种开发框架,用来支持动态网站、网络应用和网络服务的开发。这大多数的web框架提供了一套开发和部署网站的方式,也为web行为提供了一套通用的方法。web框架已经实现了很多功能,…

C语言——有一个3*4的矩阵,要求求出其中值最大的那个元素的值,以及其所在的行号和列号

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h> int main() {int i,j,row0,colum0,a[3][4]{{1,2,3,4},{9,8,7,6},{-10,10,-5,2}};int maxa[0][0];for ( i 0; i < 3; i)//行&#xff08;row&#xff09;{for ( j 0; j < 4; j)//列&#xff08;colum&#xf…

API接口测试工具的主要作用及选择指南

API接口测试是现代软件开发中至关重要的一环。为了确保不同组件之间的无缝集成和功能正常运作&#xff0c;API接口测试工具应运而生。本文将介绍API接口测试工具的主要作用&#xff0c;以及在选择适合项目的工具时需要考虑的因素。 1、功能测试&#xff1a;API接口测试工具的首…

深入理解 SQL UNION 运算符及其应用场景

SQL UNION运算符 SQL UNION运算符用于组合两个或多个SELECT语句的结果集。 每个UNION中的SELECT语句必须具有相同数量的列。列的数据类型也必须相似。每个SELECT语句中的列也必须按照相同的顺序排列。 UNION语法 SELECT column_name(s) FROM table1 UNION SELECT column_na…

你真的懂人工智能吗?AI真的只是能陪你聊天而已吗?

提到AI这个词语&#xff0c;相信大家并不陌生&#xff0c;尤其是前段时间爆火的chatgpt&#xff0c;让我们发现似乎AI已经渗透到我们生活的方方面面了&#xff0c;但是你确定你真的了解AI这个事物吗&#xff1f;它真的只是一个简简单单的人工智能吗&#xff1f;恐怕不止如此。那…

Python解释器下载和安装

什么是python解释器 一款用于执行python代码的应用程序 如何下载python解释器 下载网址&#xff1a;Download Python | Python.org 安装步骤&#xff1a; 双击下载下来的安装包测试