羽隔已就之图像处理之BP神经网络入门

小y最近非常忙,这一年来,活很多,一直在加班、出差,也没好好休息过。最近在武汉出差一个多月了,项目逐渐完结,有点闲时间了,回首望,这一年设定的很多目标都没完成。
还记得,我想写一篇用matlab识别车牌的程序讲解,但是一直没做。今天想着,怎么得都要啃一下这个硬骨头。因为我要是一直不写,一直不敢面对这个问题,也就会一直不学习,那怎么才能进步呢?正如怪鸽说,我们遇到什么困难也不要怕,微笑的面对他,消除恐惧的最好办法就是面对恐惧。
图像识别我想用的技术含有:BP神经网络技术、图像提取特征值、图像分割技术但是这些技术还没到家,今天在酒店研究BP神经网络的用法。
我对BP神经网络的理解如下:
用一组已知的数据走向去推断另外一组数据的走向。
我的想法就是图像都有特征向量,比如数字1,会有数字1的特征向量,这个特征向量经过一系列数学运算一定可以成为一个标准的参照,车牌的数字1的特征向量一定会相符模板的。
接下来我讲讲我是如何学习神经网络的
怎么说呢,我看资料,很多神经网络上来都是一堆不知道干什么的数组,让一个很久没接触数学的人直接看的话会很难受,数据莫名其妙,结论也莫名奇妙。
我考虑了下,很多人给出的模型根本看不懂,毕竟隔行如隔山嘛。那么机智的小y想到了,如果我用一个简单的数学模型去分析的话,这样结论大家也能猜到,也会进行调优,优化。
怎么选模型难住了小y,突然想到平抛不就是个最简单的模型吗,把平抛简化后不就是抛物线模型吗,对称轴是y轴的二次函数。对就用他,摒弃资料的模型,直接创新!
首先使用二次函数获得所需要的数据
在这里插入图片描述
在matlab中
在这里插入图片描述
在矩阵运算中,x乘法需要加.

使用newff创建一个前馈反向传播网络
在这里插入图片描述
newff可以传三个值,如下所示 net = newff(P,T,S)
P的通俗理解可以认为是输入向量,T的通俗理解为,通过某种映射法则获得的输出向量。S是隐藏层的大小。如图标红所示
在这里插入图片描述
后期大家自己玩可以调节试试。
哈,现在开始训练自己创建的神经网络,使用train函数
在这里插入图片描述
训练时会弹出类似于这样的一个对话框
在这里插入图片描述
太数学了,后期慢慢研究。
然后我们看看实验结果,使用sim函数:
在这里插入图片描述
net1是我们训练后的神经网络,那么A呢,A就是我们的输入向量,这里A取值
在这里插入图片描述
这个时候我们希望A的输出应该是100 ~ 0 ~ 100的一个值,使用plot函数画出他的形状

在这里插入图片描述
这里面预测的值的结果用o去表示,然后运行程序。
在这里插入图片描述

-5 ~ 0 ~ 5 的值是已知的,落在线上符合我的理解,o是预测值,当x轴为-10时预测值约在98,符合预测,当x轴为10时,对应的预测值约在99左右,已经不符合预期了。看来需要调优。
观察几个性能参数
性能如下:
在这里插入图片描述
训练状态如下
在这里插入图片描述
回归如下
在这里插入图片描述
在这里插入图片描述
使用了3层隐藏层。
后记:经过资料查阅得知,隐藏层并不是越多越好,也需要按实际的情况去测试。而且每次运行的结果也会不同,需要多多测试然后将自己的网络保存。
如果newff函数不做任何参数时,他的激活函数长成这样
在这里插入图片描述
更换激活函数
在这里插入图片描述

加入了logsig参数后其变成了这样
在这里插入图片描述
调参后,网络图如下图所示:
在这里插入图片描述

train函数

这里写下补充:

  1. newff

newff(P、T、S、TF、BTF、BLF、PF、IPF、OPF、DDF)采用可选输入,
TFi——第i层的传递函数。默认为“tansig”
隐藏层,输出层为“purelin”。
BTF-Backrop网络训练功能,默认为“trainlm”。
BLF-Backrop权重/偏差学习函数,默认值=“learngdm”。
PF-性能函数,默认值=“mse”。
IPF—输入处理函数的行单元阵列。
默认值为{“fixunknowns”、“mconsntrows”、“apminmax”}。
输出处理函数的行单元阵列。
默认值为{‘emconsntrows’,‘apminmax’}。
DDF—数据划分功能,默认为“divideerand”;
并返回一个N层前馈反向网络。

  1. train
    训练浅层神经网络, 此函数训练一个浅层神经网络。对于使用卷积或 LSTM 神经网络的深度学习。
    [trainedNet,tr] = train(net,X,T,Xi,Ai,EW,Name,Value)
    输入参数
    net - 输入网络
    network 对象
    X - 网络输入
    矩阵 | 元胞数组 | 合成数据 | gpuArray
    T - 网络目标
    零 (默认值) | 矩阵 | 元胞数组 | 合成数据 | gpuArray
    Xi - 初始输入延迟条件
    零 (默认值) | 元胞数组 | 矩阵
    Ai - 初始层延迟条件
    零 (默认值) | 元胞数组 | 矩阵
    EW - 误差权重,元胞数组
    名称-值参数
    useParallel - 用于指定并行计算的选项
    ‘no’ (默认值) | ‘yes’
    useGPU - 用于指定 GPU 计算的选项
    ‘no’ (默认值) | ‘yes’ | ‘only’
    showResources - 用于显示资源的选项
    ‘no’ (默认值) | ‘yes’
    reduction - 减少内存使用量
    1 (默认值) | 正整数
    CheckpointFile - 检查点文件
    ‘’ (默认值) | 字符向量
    CheckpointDelay - 检查点延迟
    60 (默认值) | 非负整数
    输出参数
    trainedNet - 经过训练的网络
    network 对象
    tr - 训练记录,结构体

    源代码下载路径如下
https://download.csdn.net/download/qq_43161960/88577292?spm=1001.2014.3001.5503

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/196692.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【攻防世界-misc】Encode

1.下载解压文件,打开这个内容有些疑似ROT13加密,利用在线工具解密:ROT13解码计算器 - 计算专家 得到了解密后的值 得到解码结果后,看到是由数字和字母组成,再根据题目描述为套娃,猜测为base编码&#xff08…

处理器及微控制器:XCZU15EG-2FFVC900I 可编程单元

XCZU15EG-2FFVC900I参数: Zynq UltraScale™ MPSoC 系列基于 Xilinx UltraScale™ MPSoC 架构。该 Zynq UltraScale™ MPSoC 器件集成了功能丰富的 64 位四核或双核 Arm Cortex-A53 和双核 Arm Cortex-R5F 处理系统(基于 Xilinx UltraScale™ MPSoC 架…

Vue3挂载完毕后,隐藏dom再重新加载组件的方法

组件原本是在PC端使用的,现在需要把组件再封装一次,供app调用,但是在app上会显示tag栏,有占位影响空间,所以需求去掉头部tag,只显示下方组件。 实现方法,以前是直接引用的组件,现在改…

一天之内“三个离职群都满了”;飞行出租车的时代就此开启?丨 RTE 开发者日报 Vol.94

开发者朋友们大家好: 这里是 「RTE 开发者日报」 ,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE (Real Time Engagement) 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

java学习part20内部类

116-面向对象(高级)-类的成员之五:内部类_哔哩哔哩_bilibili 1.内部类

在微服务架构中的数据一致性

当从传统的单体应用架构转移到微服务架构时,特别是涉及数据一致性时,数据一致性是微服务架构中最困难的部分。传统的单体应用中,一个共享的关系型数据库负责处理数据一致性。在微服务架构中,如果使用“每个服务一个数据库”的模式…

Java零基础——SpringBoot篇

SSM Springboot 分布式微服务 1.Spring的发展 回顾:Spring是一个开源框架,2003年兴起的一个轻量级的Java 开发框架,作者:Rod Johnson。Spring是为了解决企业级应用开发的复杂性而创建的,简化开发。 1.1 Spring1.x时…

HarmonyOS 数据持久化 Preferences 如何在页面中对数据进行读写

背景介绍 最近在了解并跟着官方文档尝试做一个鸿蒙app 小demo的过程中对在app中保存数据遇到些问题 特此记录下来 这里的数据持久化以 Preferences为例子展开 废话不多说 这里直接上节目(官方提供的文档示例:) 以Stage模型为例 1.明确preferences的类型 import data_prefer…

四川劳动保障杂志社四川劳动保障编辑部四川劳动保障杂志2023年第10期目录

主题报道 四川抢抓“金九银十”招聘季多措并举稳就业促就业 举措频“上新” 金秋送岗忙 张玉芳; 2-5 法眼《四川劳动保障》投稿:cnqikantg126.com 筑牢长期护理保险基金安全防线 李科仲;赖晓薇; 6-7 调研 提升职业技能培训工作的举措 寇爵; 8-9 城乡…

虚拟机虚拟化原理

目录 什么是虚拟化广义虚拟化狭义虚拟化 虚拟化指令集敏感指令集虚拟化指令集的工作模式监视器对敏感指令的处理过程: 虚拟化类型全虚拟化类虚拟化硬件辅助虚拟化 虚拟化架构裸金属架构宿主机模式架构 什么是虚拟化 虚拟化就是通过模仿下层原有的功能模块创造接口来…

电压调整型脉宽调制控制集成电路芯片D7500,工作电压范围7V ~ 40V,输出电流(Max)可达200mA,具有欠压锁定功能

D7500/D7500F SMPS 控制器电路,是一块电压调整型脉宽调制控制集成电路。内部包含5V 基准电压电路、两个误差放大器、触发电路、控制输出电路、脉宽调制比较 器、死区时间比较器及一个 振荡器。该电路可转换频率1kHz至300kHz, 基准电压(Vref)的精确度提…

echarts 水波图

echarts 水波图 安装 npm install echarts --save npm install echarts-liquidfill --save引入 import * as echarts from echarts; import echarts-liquidfill;html <div id"chart1" ref"chart1" class"chart1"></div>css .cha…

DehazeNet: An End-to-End System for Single Image Haze Removal

来源&#xff1a;2016 IEEE journal Cai B, Xu X, Jia K, et al. Dehazenet: An end-to-end system for single image haze removal[J]. IEEE transactions on image processing, 2016, 25(11): 5187-5198. GitHub - caibolun/DehazeNet: DehazeNet: An End-to-End System for …

企业客户服务怎么做?6个有效方法献上!

毋庸置疑&#xff0c;赢得客户的青睐是维系企业经济长青的基础。想要客户满意&#xff0c;得到最佳的客户评价&#xff0c;企业就需要为客户提供超出他们期望的服务。客户服务(Customer Service)是企业成功的关键环节之一&#xff0c;它不仅仅是满足客户需求的过程&#xff0c;…

全新付费进群系统源码 完整版教程

首先准备域名和服务器 安装环境&#xff1a;Nginx1.18 MySQL 5.6 php7.2 安装扩展sg11 伪静态thikphp 后台域名/admin账号admin密码123456 代理域名/daili账号admin密码123456 一、环境配置 二、建站上传源代码解压 上传数据库配置数据库信息 三、登入管理后台 后台域名/ad…

NI自动化测试系统用电必备攻略,电源规划大揭秘

就像使用电脑之前需接通电源一样&#xff0c;自动化测试系统的电源选择也是首当其冲的问题&#xff0c;只不是这个问题更复杂。 比如&#xff0c;应考虑地理位置因素&#xff0c;因为不同国家或地区的公共电网所提供的线路功率有所不同。在电源布局和设备选型方面&#xff0c;有…

大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一)

本期文章&#xff0c;我们将通过三个动手实验从浅到深地解读和演示大语言模型&#xff08;LLMs&#xff09;&#xff0c;如何结合 Amazon SageMaker 的模型部署、模型编译优化、模型分布式训练等。 实验一&#xff1a;使用 Amazon SageMaker 构建基于开源 GPT-J 模型的对话机器…

14.Tomcat和HTTP协议-[一篇通]

文章目录 1.HTTP 协议1.1HTTP 是什么1.2理解 "应用层协议"1.3理解 HTTP 协议的工作过程1.4HTTP 协议格式1.4.1抓包工具的使用(Fiddler)1.4.2抓包工具的原理1.4.3抓包结果1.4.4协议格式总结 1.5HTTP 请求 (Request)1.5.1认识 URL1.5.1.1URL 基本格式1.5.1.2关于 URL e…

前缀和——238. 除自身以外数组的乘积

文章目录 &#x1f377;1. 题目&#x1f378;2. 算法原理&#x1f365;解法一&#xff1a;暴力求解&#x1f365;解法二&#xff1a;前缀和&#xff08;积&#xff09; &#x1f379;3. 代码实现 &#x1f377;1. 题目 题目链接&#xff1a;238. 除自身以外数组的乘积 - 力扣&a…

【测试开发】第五节.测试——自动化测试(Selenium工具)

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;Java测试开发 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01; 前言 一、…