竞赛选题 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正

文章目录

  • 0 简介
  • 1 思路简介
    • 1.1 车牌定位
    • 1.2 畸变校正
  • 2 代码实现
    • 2.1 车牌定位
      • 2.1.1 通过颜色特征选定可疑区域
      • 2.1.2 寻找车牌外围轮廓
      • 2.1.3 车牌区域定位
    • 2.2 畸变校正
      • 2.2.1 畸变后车牌顶点定位
      • 2.2.2 校正
  • 7 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器视觉的图像矫正 (以车牌识别为例)

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 思路简介

目前车牌识别系统在各小区门口随处可见,识别效果貌似都还可以。查阅资料后,发现整个过程又可以细化为车牌定位、畸变校正、车牌分割和内容识别四部分。本篇随笔主要介绍车牌定位及畸变校正两部分,在python环境下通过opencv实现。

1.1 车牌定位

目前主流的车牌定位方法从大的方面来说可以分为两类:一种是基于车牌的背景颜色特征;另一种基于车牌的轮廓形状特征。基于颜色特征的又可分为两类:一种在RGB空间识别,另一种在HSV空间识别。经测试后发现,单独使用任何一种方法,效果均不太理想。目前比较普遍的做法是几种定位方法同时使用,或用一种识别,另一种验证。本文主要通过颜色特征对车牌进行定位,以HSV空间的H分量为主,以RGB空间的R分量和B分量为辅,后续再用车牌的长宽比例排除干扰。

1.2 畸变校正

在车牌的图像采集过程中,相机镜头通常都不是垂直于车牌的,所以待识别图像中车牌或多或少都会有一定程度的畸变,这给后续的车牌内容识别带来了一定的困难。因此需要对车牌进行畸变校正,消除畸变带来的不利影响。

2 代码实现

2.1 车牌定位

2.1.1 通过颜色特征选定可疑区域

取了不同光照环境下车牌的图像,截取其背景颜色,利用opencv进行通道分离和颜色空间转换,经试验后,总结出车牌背景色的以下特征:

  • (1)在HSV空间下,H分量的值通常都在115附近徘徊,S分量和V分量因光照不同而差异较大(opencv中H分量的取值范围是0到179,而不是图像学中的0到360;S分量和V分量的取值范围是到255);

  • (2)在RGB空间下,R分量通常较小,一般在30以下,B分量通常较大,一般在80以上,G分量波动较大;

  • (3)在HSV空间下对图像进行补光和加饱和度处理,即将图像的S分量和V分量均置为255,再进行色彩空间转换,由HSV空间转换为RGB空间,发现R分量全部变为0,B分量全部变为255(此操作会引入较大的干扰,后续没有使用)。

根据以上特征可初步筛选出可疑的车牌区域。随后对灰度图进行操作,将可疑位置的像素值置为255,其他位置的像素值置为0,即根据特征对图像进行了二值化。二值化图像中,可疑区域用白色表示,其他区域均为黑色。随后可通过膨胀腐蚀等操作对图像进一步处理。

for i in range(img_h):
    for j in range(img_w):
        # 普通蓝色车牌,同时排除透明反光物质的干扰
        if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
            img_gray[i, j] = 255
        else:
            img_gray[i, j] = 0

在这里插入图片描述

2.1.2 寻找车牌外围轮廓

选定可疑区域并将图像二值化后,一般情况下,图像中就只有车牌位置的像素颜色为白,但在一些特殊情况下还会存在一些噪声。如上图所示,由于图像右上角存在蓝色支架,与车牌颜色特征相符,因此也被当做车牌识别了出来,由此引入了噪声。

经过观察可以发现,车牌区域与噪声之间存在较大的差异,且车牌区域特征比较明显:

  • (1)根据我国常规车牌的形状可知,车牌的形状为扁平矩形,长宽比约为3:1;

  • (2)车牌区域面积远大于噪声区域,一般为图像中最大的白色区域。

在这里插入图片描述

可以通过cv2.findContours()函数寻找二值化后图像中白色区域的轮廓。

注意:在opencv2和opencv4中,cv2.findContours()的返回值有两个,而在opencv3中,返回值有3个。视opencv版本不同,代码的写法也会存在一定的差异。

# 检测所有外轮廓,只留矩形的四个顶点
# opencv4.0, opencv2.x
contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# opencv3.x
_, contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

这里,因为二值化图像中共有三块白色区域(车牌及两处噪声),因此返回值contours为长度为3的list。list内装有3个array,每个array内各存放着一块白色区域的轮廓信息。每个array的shape均为(n,
1, 2),即每个array存放着对应白色区域轮廓上n个点的坐标。

目前得到了3个array,即3组轮廓信息,但我们并不清楚其中哪个是车牌区域对应的那一组轮廓信息。此时可以根据车牌的上述特征筛选出车牌区域的轮廓。

#形状及大小筛选校验
det_x_max = 0
det_y_max = 0
num = 0
for i in range(len(contours)):
    x_min = np.min(contours[i][ :, :, 0])
    x_max = np.max(contours[i][ :, :, 0])
    y_min = np.min(contours[i][ :, :, 1])
    y_max = np.max(contours[i][ :, :, 1])
    det_x = x_max - x_min
    det_y = y_max - y_min
    if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
        det_y_max = det_y
        det_x_max = det_x
        num = i
# 获取最可疑区域轮廓点集
points = np.array(contours[num][:, 0])

最终得到的points的shape为(n, 2),即存放了n个点的坐标,这n个点均分布在车牌的边缘上

2.1.3 车牌区域定位

获取车牌轮廓上的点集后,可用cv2.minAreaRect()获取点集的最小外接矩形。返回值rect内包含该矩形的中心点坐标、高度宽度及倾斜角度等信息,使用cv2.boxPoints()可获取该矩形的四个顶点坐标。

# 获取最小外接矩阵,中心点坐标,宽高,旋转角度
rect = cv2.minAreaRect(points)
# 获取矩形四个顶点,浮点型
box = cv2.boxPoints(rect)
# 取整
box = np.int0(box)

但我们并不清楚这四个坐标点各对应着矩形的哪一个顶点,因此无法充分地利用这些坐标信息。

可以从坐标值的大小特征入手,将四个坐标与矩形的四个顶点匹配起来:在opencv的坐标体系下,纵坐标最小的是top_point,纵坐标最大的是bottom_point,
横坐标最小的是left_point,横坐标最大的是right_point。

# 获取四个顶点坐标
left_point_x = np.min(box[:, 0])
right_point_x = np.max(box[:, 0])
top_point_y = np.min(box[:, 1])
bottom_point_y = np.max(box[:, 1])

left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
# 上下左右四个点坐标
vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])

在这里插入图片描述
在这里插入图片描述

2.2 畸变校正

2.2.1 畸变后车牌顶点定位

要想实现车牌的畸变矫正,必须找到畸变前后对应点的位置关系。

可以看出,本是矩形的车牌畸变后变成了平行四边形,因此车牌轮廓和得出来的矩形轮廓并不契合。但有了矩形的四个顶点坐标后,可以通过简单的几何相似关系求出平行四边形车牌的四个顶点坐标。

在本例中,平行四边形四个顶点与矩形四个顶点之间有如下关系:矩形顶点Top_Point、Bottom_Point与平行四边形顶点new_top_point、new_bottom_point重合,矩形顶点Top_Point的横坐标与平行四边形顶点new_right_point的横坐标相同,矩形顶点Bottom_Point的横坐标与平行四边形顶点new_left_point的横坐标相同。

在这里插入图片描述

但事实上,由于拍摄的角度不同,可能出现两种不同的畸变情况。可以根据矩形倾斜角度的不同来判断具体是哪种畸变情况。

在这里插入图片描述

判断出具体的畸变情况后,选用对应的几何相似关系,即可轻易地求出平行四边形四个顶点坐标,即得到了畸变后车牌四个顶点的坐标。

要想实现车牌的校正,还需得到畸变前车牌四个顶点的坐标。因为我国车牌的标准尺寸为440X140,因此可规定畸变前车牌的四个顶点坐标分别为:(0,0),(440,0),(0,140),(440,140)。顺序上需与畸变后的四个顶点坐标相对应。

# 畸变情况1
if rect[2] > -45:
    new_right_point_x = vertices[0, 0]
    new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
    new_left_point_x = vertices[1, 0]
    new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
# 畸变情况2
elif rect[2] < -45:
    new_right_point_x = vertices[1, 0]
    new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
    new_left_point_x = vertices[0, 0]
    new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
    # 校正后的四个顶点坐标
    point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])

# 校正前平行四边形四个顶点坐标
new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
point_set_0 = np.float32(new_box)

2.2.2 校正

该畸变是由于摄像头与车牌不垂直而引起的投影造成的,因此可用cv2.warpPerspective()来进行校正。

# 变换矩阵
mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
# 投影变换
lic = cv2.warpPerspective(img, mat, (440, 140))

在这里插入图片描述


    import cv2
    import numpy as np
    
    # 预处理
    def imgProcess(path):
        img = cv2.imread(path)
        # 统一规定大小
        img = cv2.resize(img, (640,480))
        # 高斯模糊
        img_Gas = cv2.GaussianBlur(img,(5,5),0)
        # RGB通道分离
        img_B = cv2.split(img_Gas)[0]
        img_G = cv2.split(img_Gas)[1]
        img_R = cv2.split(img_Gas)[2]
        # 读取灰度图和HSV空间图
        img_gray = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2GRAY)
        img_HSV = cv2.cvtColor(img_Gas, cv2.COLOR_BGR2HSV)
        return img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV
    
    # 初步识别
    def preIdentification(img_gray, img_HSV, img_B, img_R):
        for i in range(480):
            for j in range(640):
                # 普通蓝色车牌,同时排除透明反光物质的干扰
                if ((img_HSV[:, :, 0][i, j]-115)**2 < 15**2) and (img_B[i, j] > 70) and (img_R[i, j] < 40):
                    img_gray[i, j] = 255
                else:
                    img_gray[i, j] = 0
        # 定义核
        kernel_small = np.ones((3, 3))
        kernel_big = np.ones((7, 7))
    
        img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0) # 高斯平滑
        img_di = cv2.dilate(img_gray, kernel_small, iterations=5) # 腐蚀5次
        img_close = cv2.morphologyEx(img_di, cv2.MORPH_CLOSE, kernel_big) # 闭操作
        img_close = cv2.GaussianBlur(img_close, (5, 5), 0) # 高斯平滑
        _, img_bin = cv2.threshold(img_close, 100, 255, cv2.THRESH_BINARY) # 二值化
        return img_bin
    
    # 定位
    def fixPosition(img, img_bin):
        # 检测所有外轮廓,只留矩形的四个顶点
        contours, _ = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        #形状及大小筛选校验
        det_x_max = 0
        det_y_max = 0
        num = 0
        for i in range(len(contours)):
            x_min = np.min(contours[i][ :, :, 0])
            x_max = np.max(contours[i][ :, :, 0])
            y_min = np.min(contours[i][ :, :, 1])
            y_max = np.max(contours[i][ :, :, 1])
            det_x = x_max - x_min
            det_y = y_max - y_min
            if (det_x / det_y > 1.8) and (det_x > det_x_max ) and (det_y > det_y_max ):
                det_y_max = det_y
                det_x_max = det_x
                num = i
        # 获取最可疑区域轮廓点集
        points = np.array(contours[num][:, 0])
        return points

    #img_lic_canny = cv2.Canny(img_lic_bin, 100, 200)

    def findVertices(points):
        # 获取最小外接矩阵,中心点坐标,宽高,旋转角度
        rect = cv2.minAreaRect(points)
        # 获取矩形四个顶点,浮点型
        box = cv2.boxPoints(rect)
        # 取整
        box = np.int0(box)
        # 获取四个顶点坐标
        left_point_x = np.min(box[:, 0])
        right_point_x = np.max(box[:, 0])
        top_point_y = np.min(box[:, 1])
        bottom_point_y = np.max(box[:, 1])
    
        left_point_y = box[:, 1][np.where(box[:, 0] == left_point_x)][0]
        right_point_y = box[:, 1][np.where(box[:, 0] == right_point_x)][0]
        top_point_x = box[:, 0][np.where(box[:, 1] == top_point_y)][0]
        bottom_point_x = box[:, 0][np.where(box[:, 1] == bottom_point_y)][0]
        # 上下左右四个点坐标
        vertices = np.array([[top_point_x, top_point_y], [bottom_point_x, bottom_point_y], [left_point_x, left_point_y], [right_point_x, right_point_y]])
        return vertices, rect
    
    def tiltCorrection(vertices, rect):
        # 畸变情况1
        if rect[2] > -45:
            new_right_point_x = vertices[0, 0]
            new_right_point_y = int(vertices[1, 1] - (vertices[0, 0]- vertices[1, 0]) / (vertices[3, 0] - vertices[1, 0]) * (vertices[1, 1] - vertices[3, 1]))
            new_left_point_x = vertices[1, 0]
            new_left_point_y = int(vertices[0, 1] + (vertices[0, 0] - vertices[1, 0]) / (vertices[0, 0] - vertices[2, 0]) * (vertices[2, 1] - vertices[0, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[440, 0],[0, 0],[0, 140],[440, 140]])
        # 畸变情况2
        elif rect[2] < -45:
            new_right_point_x = vertices[1, 0]
            new_right_point_y = int(vertices[0, 1] + (vertices[1, 0] - vertices[0, 0]) / (vertices[3, 0] - vertices[0, 0]) * (vertices[3, 1] - vertices[0, 1]))
            new_left_point_x = vertices[0, 0]
            new_left_point_y = int(vertices[1, 1] - (vertices[1, 0] - vertices[0, 0]) / (vertices[1, 0] - vertices[2, 0]) * (vertices[1, 1] - vertices[2, 1]))
            # 校正后的四个顶点坐标
            point_set_1 = np.float32([[0, 0],[0, 140],[440, 140],[440, 0]])
    
        # 校正前平行四边形四个顶点坐标
        new_box = np.array([(vertices[0, 0], vertices[0, 1]), (new_left_point_x, new_left_point_y), (vertices[1, 0], vertices[1, 1]), (new_right_point_x, new_right_point_y)])
        point_set_0 = np.float32(new_box)
        return point_set_0, point_set_1, new_box
    
    def transform(img, point_set_0, point_set_1):
        # 变换矩阵
        mat = cv2.getPerspectiveTransform(point_set_0, point_set_1)
        # 投影变换
        lic = cv2.warpPerspective(img, mat, (440, 140))
        return lic
    
    def main():
        path = 'F:\\Python\\license_plate\\test\\9.jpg'
        # 图像预处理
        img, img_Gas, img_B, img_G, img_R, img_gray, img_HSV = imgProcess(path)
        # 初步识别
        img_bin  = preIdentification(img_gray, img_HSV, img_B, img_R)
        points = fixPosition(img, img_bin)
        vertices, rect = findVertices(points)
        point_set_0, point_set_1, new_box = tiltCorrection(vertices, rect)
        img_draw = cv2.drawContours(img.copy(), [new_box], -1, (0,0,255), 3)
        lic = transform(img, point_set_0, point_set_1)
        # 原图上框出车牌
        cv2.namedWindow("Image")
        cv2.imshow("Image", img_draw)
        # 二值化图像
        cv2.namedWindow("Image_Bin")
        cv2.imshow("Image_Bin", img_bin)
        # 显示校正后的车牌
        cv2.namedWindow("Lic")
        cv2.imshow("Lic", lic)
        # 暂停、关闭窗口
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    if __name__ == '__main__':
        main()



在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/196264.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

视频文案怎么写,媒介盒子支招

近几年短视频成为风口&#xff0c;各行各业都想分一杯羹&#xff0c;但是一头热的你&#xff0c;是否知道短视频的相关文案怎么写呢?正所谓兵马未动&#xff0c;文案先行&#xff0c;一个合适的文案是上热门的秘密武器&#xff0c;今天媒介盒子就来和大家聊聊&#xff1a;视频…

概要设计检查单、需求规格说明检查单

1、概要设计检查表 2、需求规格说明书检查表 概要&#xff08;结构&#xff09;设计检查表 工程名称 业主单位 承建单位 检查依据 1、设计方案、投标文件&#xff1b;2、合同&#xff1b;3、信息系统相关技术标准及安全规范&#xff1b; 检查类目 检查内容 检查…

汽车电子 -- 车载ADAS之RCW(后碰撞预警系统)

相关法规文件: RCW&#xff1a; GB 4785-2019 汽车及挂车外部照明和光信号装置的安装规定 一、后方碰撞预警系统 RCW&#xff08; Rear Collision Warning &#xff09; 参看&#xff1a;功能定义-后方碰撞预警 RCW 功能可以对自车行驶过程中对后方车辆进行监测&#xff0…

Tableau连接到mysql数据库,配置驱动

Tableau想要连接mysql数据库进行数据的可视化&#xff0c;但是没有ODBC驱动&#xff0c;看了几篇文章写的&#xff0c;不是很清楚&#xff0c;顺便写下自己的思路。 1、下载mysql对应的ODBC驱动 首先要知道自己mysql的版本&#xff0c;然后下载对应的ODBC驱动。 MySQL :: Dow…

colab notebook导出为PDF

目录 方法一&#xff1a;使用浏览器打印功能 方法二&#xff1a;使用nbconvert转换 方法三&#xff1a;在线转换 方法一&#xff1a;使用浏览器打印功能 一般快捷键是CTRLP 然后改变目标打印机为另存为PDF 这样就可以将notebook保存为PDF了 方法二&#xff1a;使用nbconver…

供应链攻击的类型和预防

供应链攻击是一种面向软件开发人员和供应商的新兴威胁&#xff0c;目标是通过感染合法应用分发恶意软件来访问源代码、构建过程或更新机制。 供应链攻击是威胁行为者通过利用软件供应链中的漏洞进入组织网络的一种网络攻击&#xff0c;供应链攻击的目标可以是软件开发过程中的…

虚幻学习笔记5—UI预设体制作

一、前言 本文使用的虚幻引擎5.3.2&#xff0c;在unity中有预设体的概念&#xff0c;可以将一个组合型的物体或UI制作成预设体&#xff0c;方便后续可以快速制作更多元的内容和复用。虚幻本身没有这个概念&#xff0c;但是要实现类似的效果其&#xff0c;故此我引用了这个概念。…

【密码学引论】Hash密码

第六章 Hash密码 md4、md5、sha系列、SM3 定义&#xff1a;将任意长度的消息映射成固定长度消息的函数功能&#xff1a;确保数据的真实性和完整性&#xff0c;主要用于认证和数字签名Hash函数的安全性&#xff1a;单向性、抗若碰撞性、抗强碰撞性生日攻击&#xff1a;对于生日…

这才是BI大数据分析工具的正确打开方式!

这两年经济下行给各行各业造成不小的发展困扰&#xff0c;为此企业积极自救&#xff0c;希望通过数字化降本增效&#xff0c;提高业绩水平。BI大数据分析工具就是企业数字化转型中常用到的一种商业智能BI工具&#xff0c;主要作用是缩短数据分析时间&#xff0c;提升企业数据分…

没有预装Edge浏览器的Windows系统安装Edge正式版的方法,离线安装和在线安装

一、在线安装 没有预装Edge浏览器的Windows系统安装Edge正式版的方法 二、离线安装 进入到下面这个目录 C:\Program Files (x86)

LFM信号分析

LFM信号 在时域中&#xff0c;理想线性调频信号持续时间为 T T T 秒&#xff0c;振幅为一常量&#xff0c;中心频率为 f c e n t e r f_{center} fcenter​ &#xff0c;相位 θ ( t ) \theta(t) θ(t) 随时间按一定规律变化。当 f c e n t e r f_{center} fcenter​ 为0时…

社区新零售:重塑零售业的全新模式

社区新零售&#xff1a;重塑零售业的全新模式 近年来&#xff0c;新零售业成为了研究的焦点&#xff0c;它是一种以互联网为基础的零售形式。新零售通过运用先进技术手段&#xff0c;如大数据和人工智能&#xff0c;对商品的生产、流通和销售过程进行升级改造&#xff0c;重新构…

Windows10免安装PostgreSQL

1. PostgreSQL简介2. 下载3. 安装环境4. 安装 4.1. 初始化数据库4.2. 启动数据库4.3. 注册服务4.3. 卸载服务 1. PostgreSQL简介 PostgreSQL 是一种特性非常齐全的自由软件的对象-关系型数据库管理系统&#xff0c;是以加州大学计算机系开发的 POSTGRES 4.2版本为基础的对象关…

我用C语言实现的文字跑马灯,简直是程序员的表白神器!

系列文章 Python百宝箱 C语言百宝箱 目录 系列文章 写在前面 C语言简介 EasyX简介 EasyX下载安装 文字跑马灯 写在后面 写在前面 教你用C语言实现文字跑马灯效果&#xff0c;简直是C语言表白神器&#xff01; 环境&#xff1a;C语言/C 软件&#xff1a;Visual Studi…

丽晶酒店及度假村打造绮丽之境“美食实验室”中国市场首秀

于重庆丽晶酒店以艺术与美食的碰撞演绎“对比之美”&#xff0c;感官之华 2023年11月28日&#xff0c;中国上海 ——基于对当下消费趋势的敏锐洞察&#xff0c;洲际酒店集团旗下奢华品牌丽晶酒店及度假村近年来不断焕新&#xff0c;以崭新形象缔造现代奢华的旅居体验。作为丽晶…

Linux内存回收:LRU算法

linux操作系统再内存不足时会使用Swap机制&#xff0c;将一些不经常使用的匿名内存页放到磁盘当中&#xff0c;等下次需要时再读取到内存当中&#xff0c;而这个LRU算法就是用来选择把哪些不常使用的匿名内存页放到磁盘当中的。 LRU&#xff08;Least Recently Used&#xff09…

【运维知识大神篇】超详细的ELFK日志分析教程5(Logstash中Filter常用插件详解+实战练习)

本篇文章主要讲解logstash的有关内容&#xff0c;包括filter的grok、date、user_agent、geoip、mutate插件&#xff0c;多个输入输出方案&#xff08;多实例if多分支语句&#xff09;&#xff0c;每个知识点都涉及实战练习&#xff0c;在实战中学习&#xff0c;事半功倍&#x…

Mysql 高级日志binlog、undoLog、redoLog 详解

数据更新流程与日志记录&#xff1a; undoLog&#xff1a; binLog&#xff1a; redoLog&#xff1a;

Leetcode—160.相交链表【简单】

2023每日刷题&#xff08;四十一&#xff09; Leetcode—160.相交链表 算法思想 两个链表的节点之和是相等的 如果两个链表相交&#xff0c;那么相交点之后的长度是相同的 我们需要做的事情是&#xff0c;让两个链表从同距离末尾同等距离的位置开始遍历。这个位置只能是较短…

建筑红模板尺寸规格

红模板是建筑施工中常用的一种模板材料&#xff0c;具有较好的承重能力和稳定性。在建筑工程中&#xff0c;正确选择合适的红模板尺寸规格对于施工质量和效率至关重要。本文将介绍一些关于红模板尺寸规格的信息&#xff0c;帮助您更好地了解和选择适合的红模板。 以下是关于红模…