使用opencv实现图片相似度检测

1.为什么学这个,我对图像处理非常感兴趣,我联想到海尔的指纹识别门锁是如何进行检测的,我在想不应该呀,单片机性能这么差,应该是使用了训练后的数据去检测图片的,如果我要实现草莓检测,知道它是不是草莓,我觉得单纯使用图片处理是不够的,我考虑过使用指纹模块来接触草莓从而实现判断他是不是草莓,从而联想到学习图像相似度检测,我们人类的手指事实上是有大量的传感器的,机器如果想要实现那科技含量太高了,而且成本高,就算实现了也只能放在家里自己玩…

2.代码基于python3.1 opencv,先使用直方图判断是否是简单的图形(运算快)如果不是在判断是否是复杂的图形(运算慢)

import cv2
def calculate_complexity_similarity(img1str, img2str):
    # 加载两张图片
    img1 = cv2.imread(img1str)
    img2 = cv2.imread(img2str)

    # 将图片转换为灰度图像
    gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 创建ORB特征检测器
    orb = cv2.ORB_create()

    # 检测特征点和描述符
    kp1, des1 = orb.detectAndCompute(gray_img1, None)
    kp2, des2 = orb.detectAndCompute(gray_img2, None)

    # 创建暴力匹配器
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

    # 进行特征匹配
    matches = bf.match(des1, des2)
    similarity=0.0
    # 根据特征点匹配结果计算相似度
    if len(matches) > 0:
        similarity = sum([match.distance for match in matches]) / len(matches)
        print('图片相似度为:', similarity)
    else:
        print('未找到匹配的特征点')
        # 调用函数进行图片相似度计算,计算简单的图片相似度
    return similarity
def calculate_histogram_similarity(img1_path, img2_path):
    # 读取两张图片
    img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE)
    img2 = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE)

    # 计算直方图
    hist1 = cv2.calcHist([img1], [0], None, [256], [0, 256])
    hist2 = cv2.calcHist([img2], [0], None, [256], [0, 256])

    # 归一化直方图
    cv2.normalize(hist1, hist1, 0, 1, cv2.NORM_MINMAX)
    cv2.normalize(hist2, hist2, 0, 1, cv2.NORM_MINMAX)

    # 比较直方图
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
    if similarity<0.6:
        similarity=calculate_complexity_similarity(img1str, img2str)

    return similarity


if __name__ == '__main__':
    img1str='straw1.png'
    img2str='straw3.png'

    sim = calculate_histogram_similarity(img1str, img2str)
    print('图片相似度为:', sim)

3.测试效果
//简单的图片使用直方图归一化处理
在这里插入图片描述
在这里插入图片描述
//不同的图片之间比较

在这里插入图片描述
//2和22比较
在这里插入图片描述
//2和23无法检测出来,可能是2个2颜色不一样,2和24也一样
在这里插入图片描述
//straw1和straw2 这两张是在一张图片的两颗草莓
图片相似度为: 0.8582924959300794
//straw1和straw3,不同图片的草莓
在这里插入图片描述
图片相似度为: 69.67826086956522

//与倒立的草莓
在这里插入图片描述
图片相似度为: 68.84821428571429
在这里插入图片描述
图片相似度为: 73.10416666666667

//带有草莓花的草莓,比较符合实际情况
在这里插入图片描述

图片相似度为: 0.7757366241694935

//啊这汽车和草莓是相似的?而且是多个草莓,改了下代码 如果形状都不同了,similarity<0直接返回
在这里插入图片描述
在这里插入图片描述

3.改进后的代码

import cv2
def calculate_complexity_similarity(img1str, img2str):
    # 加载两张图片
    img1 = cv2.imread(img1str)
    img2 = cv2.imread(img2str)

    # 将图片转换为灰度图像
    gray_img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    # 创建ORB特征检测器
    orb = cv2.ORB_create()

    # 检测特征点和描述符
    kp1, des1 = orb.detectAndCompute(gray_img1, None)
    kp2, des2 = orb.detectAndCompute(gray_img2, None)

    # 创建暴力匹配器
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)

    # 进行特征匹配
    matches = bf.match(des1, des2)
    similarity=0.0
    # 根据特征点匹配结果计算相似度
    if len(matches) > 0:
        similarity = sum([match.distance for match in matches]) / len(matches)
        print('图片相似度为:', similarity)
    else:
        print('未找到匹配的特征点')
        # 调用函数进行图片相似度计算,计算简单的图片相似度
    return similarity
def calculate_histogram_similarity(img1_path, img2_path):
    # 读取两张图片
    img1 = cv2.imread(img1_path, cv2.IMREAD_GRAYSCALE)
    img2 = cv2.imread(img2_path, cv2.IMREAD_GRAYSCALE)

    # 计算直方图
    hist1 = cv2.calcHist([img1], [0], None, [256], [0, 256])
    hist2 = cv2.calcHist([img2], [0], None, [256], [0, 256])

    # 归一化直方图
    cv2.normalize(hist1, hist1, 0, 1, cv2.NORM_MINMAX)
    cv2.normalize(hist2, hist2, 0, 1, cv2.NORM_MINMAX)

    # 比较直方图
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL)
    print(similarity)
     #30%的几率是那应该不是一个东西
    if similarity <0.3:
         return similarity
    if similarity<0.6:
        similarity=calculate_complexity_similarity(img1str, img2str)

    return similarity


if __name__ == '__main__':
    img1str='straw4.png'
    img2str='straw7.png'

    sim = calculate_histogram_similarity(img1str, img2str)
    print('图片相似度为:', sim)

//改进后的结果
在这里插入图片描述
//不同的形状的都返回负数
图片相似度为: -0.07563206074940822

4.以后改进的地方,上面的代码可以简单的检测颜色相同形状相同的问题,但是也面临着检测精度的不精确,我们可以录入多个图片如果取相似度最高的一张,当然性能不大好, 识别苹果和草莓达到40%相似率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/194587.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

芯片制程中温度的几种表示方法

在众多影响芯片制程的因素中&#xff0c;温度控制被视为一项至关重要的技术。温度是比较一种物质相对于另一种物质是冷还是热的衡量标准&#xff0c;它会影响到芯片的性能、可靠性以及最终产量。在不同的制程步骤中&#xff0c;温度扮演着各种各样的角色。但是在评价制程温度高…

振弦式轴力计和振弦采集仪组成的安全监测解决方案

振弦式轴力计和振弦采集仪组成的安全监测解决方案 振弦式轴力计和振弦采集仪是一种常用的结构安全监测工具&#xff0c;可以用于评估建筑物、桥梁、隧道或其他结构的结构健康状态和安全性能。这种监测方案较为先进、精确&#xff0c;并且能够监测长期的结构反应&#xff0c;因此…

Git指定分支或文件回退到指定版本

文章目录 一、分支回滚1.1、使用 git reset 命令1.2、使用 git revert 命令1.3、使用 git checkout 命令 二、文件回滚2.1、回滚未提交文件2.2、回滚已提交文件2.2.1、首先查看文件的历史版本2.2.2、找到你想要还原的版本2.2.3、将文件还原到你想要还原的版本2.2.4、提交代码 三…

便利高效双赢:无人机油气管道巡检全面升级

我国庞大的油气管道网络&#xff0c;包括原油、成品和天然气管道&#xff0c;因为地理区域广泛、建设年代久远、安全事故频发等现实因素&#xff0c;对管道的安全巡护与管理提出了更高的需求。在这一背景下&#xff0c;传统的人工巡护方式显然已经难以满足对高、精、准的要求。…

s_v_web_id或fp协议过签名,dy滑块

某音s_web_id或fp协议过签名 ‘h5_sdk_version’, ‘2.36.0’ "search_impr":{"entity_id":"1135137973613200"},"link_item_list":null,"user_permissions":null,"offline_info_list":null,"is_cf":…

计算机组成原理-页式存储器

文章目录 页式存储虚拟地址vs实地址页表&#xff1a;逻辑页->主存块号地址交换过程地址交换过程&#xff08;增加TLB&#xff09;总结 页式存储 把程序分散式地放到主存的不同块的地方 虚拟地址vs实地址 操作系统将逻辑地址映射到主存块中的物理地址&#xff0c;对应的物…

新疆大学与优艾智合机器人成立联合创新实验室

11月22日至24日&#xff0c;第五届中国工业互联网大赛新疆赛站决赛在新疆维吾尔自治区昌吉回族自治州昌吉市举行。在大赛中崭露头角的优秀解决方案&#xff0c;将为绿色工厂、绿色园区、绿色供应链等建设提供新的动能&#xff0c;促进工业绿色发展。 作为大赛的成果延伸&#…

unity UGUI中获取点击位置处的URL链接

需求是&#xff0c;我们在一个text组件中像写网页那样写入链接&#xff0c;然后点击这个链接&#xff0c;就能访问配置的网页啥的。比如&#xff1a; <a href"hello">链接文本</a></summary> 最终的效果如下&#xff1a; 图中&#xff0c;image区…

智能优化算法应用:基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于蜻蜓算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蜻蜓算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…

Docker Compose;docker-compose;docker compose

(一) Docker Compose | 菜鸟教程 --> --> --> -->

Spine深入学习———— 渲染

数据有了之后&#xff0c;就开始渲染 渲染相关 绘制顺序 骨架的绘制顺序就是一个插槽列表&#xff0c;在插槽列表中上方的附件在下方之上绘制&#xff0c;绘制顺序可以在层级树中的骨架下查看。 基础流程 渲染实现 以下按照cocos2dx的实现来 &#xff08;cocos2dx 3.7 spin…

内部类, Comparable接口, Comparator接口, Cloneable接口 ---java

目录 一. 内部类 1.1 静态内部类 1.2 实例内部类 1.3匿名内部类 二. 接口的使用实例 2.1 Comparable接口 2.2 Comparator接口 ---比较器 2.3 Cloneable接口 深拷贝浅拷贝 一. 内部类 当一个事物的内部&#xff0c;还有一个部分需要一个完整的结构进行描述&#xff0…

机器学习——支持向量机(SVM)

1.线性支持向量机 1.1数学模型 机器学习最终都是求解目标函数的最优问题&#xff1b; 一般都是讲问题转化为最小值来求解。 数学模型获得是一个不等式约束的最小化问题&#xff0c;求解时可通过构建拉格朗日函数求解。 1.2 拉格朗日函数及对偶问题求解 1.3 SMO算法求解 SMO算…

vue中的keep-alive详解与应用场景

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue-keep-alive 目录 一、Keep-alive 是什么 二、使用场景 三、原理分析 四、案例实现 activa…

虹科干货 | 适用于基于FPGA的网络设备的IEEE 1588透明时钟架构

导读&#xff1a;在基于FPGA的网络设备中&#xff0c;精确的时间同步至关重要。IEEE 1588标准定义的精确时间协议&#xff08;PTP&#xff09;为网络中的设备提供了纳秒级的时间同步。本文将介绍虹科提供的适用于基于FPGA的网络设备的IEEE 1588透明时钟&#xff08;TC&#xff…

flink源码分析之功能组件(三)-rpc组件

简介 本系列是flink源码分析的第二个系列,上一个《flink源码分析之集群与资源》分析集群与资源,本系列分析功能组件,kubeclient,rpc,心跳,高可用,slotpool,rest,metrics,future。 本文解释rpc组件,rpc组件用于个核心组件,包括作业管理器,资源管理器和任务管理器之…

uni-app 离线打包安卓Apk(小白上手)

场景&#xff1a; 在使用uni-app 开发apk时&#xff0c;使用云打包有次数限制。尤其对于测试阶段是无比难受的&#xff0c;通常是浪费打包次数进行打包或者通过usb 给测试机更新开发环境&#xff0c;但这都是无比漫长的过程 尤其有多个测试机真的是噩梦般的存在 下载离线打包示…

基于mpvue实现的cnode社区demo(附精选源码32套,涵盖商城团购等)

社区类目没有开放给个人开发者&#xff0c;所以没能上线。 预览 项目配置文件&#xff0c;更改appid {"description": "项目配置文件","setting": {"urlCheck": true,"es6": false,"postcss": false,"minif…

扫地机器人市场持续火爆,景联文科技数据采集标注方案助力扫地机器人智能化升级

随着消费者对智能家居和清洁卫生的需求增加&#xff0c;扫地机器人市场规模不断扩大。市场竞争也日益激烈&#xff0c;各品牌都在努力提升产品性能和服务质量&#xff0c;以获取更大的市场份额。 IDC的统计数据显示&#xff0c;今年双十一前两周&#xff08;2023年10月23日至20…

stream流和方法引用

1.Stream流 1.1体验Stream流【理解】 案例需求 按照下面的要求完成集合的创建和遍历 创建一个集合&#xff0c;存储多个字符串元素把集合中所有以"张"开头的元素存储到一个新的集合把"张"开头的集合中的长度为3的元素存储到一个新的集合遍历上一步得到的集…