数据结构-二叉树(1)

1.树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1.有一个特殊的结点,称为根结点,根节点没有前驱结点
2.除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
3.因此,树是递归定义的

 注意:树形结构中,子树之间不能有交集,否则就不是树形结构

1.2 树的相关概念


节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6.
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点.
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点.
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点.
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点.
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点.
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6.
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4.
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点.
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先.
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙.
森林:由m(m>0)棵互不相交的树的集合称为森林;

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。我们这里就简单的了解其中最常用的孩子兄弟表示法.

typedef int DataType;
struct Node
{
   struct Node* _firstChild1; // 第一个孩子结点
   struct Node* _pNextBrother; // 指向其下一个兄弟结点
   DataType _data; // 结点中的数据域
};


2.二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

 从上图可以看出:

1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树


注意:对于任意的二叉树都是由以下几种情况复合而成的:

2.2 特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 

2.3二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1 .
3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为n2 ,则有 n0=n2 +1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度h= log2(n+1). (ps:log2(n+1) 是log以2为底,n+1为对数).
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。


3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2 堆的概念及结构

堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。

3.3 堆的实现

3.3.1堆的定义

堆的底层可以定义一个数组。

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}HP;

3.3.2堆的初始化

void HeapInit(HP* php)
{
	assert(php);

	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

3.3.3堆的销毁

void HeapDestroy(HP* php)
{
	assert(php);

	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

3.3.4插入数据

首先判断一下空间是否满了,满了的话则扩容。再使用三目操作符判断是否是第一次扩容,再进行相应的扩容,再利用realloc的特点进行扩容或者是调整。在size位置上插入数据,再size++。但是现在不是堆,所以需要进行调整,使用向上调整。

void HeapPush(HP* php, HPDataType x)
{
	assert(php);

	// 扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}

		php->a = tmp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

3.3.5向上调整数据

假设有一组这样的小堆数据,要插入一个20,再进行向上调整。

 第一步就是通过下标找到父亲节点parent=(child-1)/2,判断父亲节点是否小于此儿子节点,如果父亲节点小于此儿子节点,就不需要调整,否则就需要进行交换。交换完后将儿子下标child=parent,在下图中就是将10换成了4。再重新计算父亲下标,因为此时的parent还是4,所以parent=(parent-1)/2计算父亲下标,再向上判断,直到父亲节点小于儿子节点或者此节点调整到根节点。

 所以这个函数开始就要计算一下父亲节点,再进入while循环,循环结束的条件是child=0,也就是调整到了根节点这个位置。进入循环先判断儿子节点和父亲节点的大小,如果儿子节点小于父亲节点则开始交换,利用Swap函数交换值,再调整儿子节点的下标和父亲节点的下标,如果儿子节点大于父亲节点了也跳出循环。

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

3.3.6打印堆

for循环写一个左闭右开即可,因为size-1才是最后一个数据的下标。

void HeapPrint(HP* php)
{
	assert(php);

	for (size_t i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

3.3.7向下调整数据

顺序表的尾删和尾插的效率是不错的,所以我们可以把尾节点和头节点交换位置,再size--删除掉尾节点。

 这个时候还没有完,因为20这个数据如果放在头节点就不能保持这个小堆了,所以需要进行向下调整,向下调整就相当于找儿子节点child=parent*2+1,写一个while循环,结束条件是child=n越界,这个时候还要做一件事,就是找出左右孩子中较小的孩子,如果child+1<n&&左孩子小于右孩子有一个不成立则不需要找大小孩子了,也就是右孩子越界的话就结束,左孩子小于右孩子也结束。如果两个条件都成立的话则将child+1,换成左孩子小的右孩子。接下来判断孩子节点和父亲节点的大小,如果孩子节点比父亲节点小,则Swap交换值,再将父亲下标parent换成孩子下标child,再计算下一个儿子节点下标,因为此时的parent还是0,所以child=parent*2+1。如果孩子节点大于父亲节点则退出循环。、

 

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child<n)
	{
		//找小的孩子
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child = child + 1;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			//继续往下调整
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

3.3.8删除数据

先交换根节点和尾节点,size--,再向下调整。

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	Swap(&php->a[0],&php->a[php->size - 1]);
	--php->size;
	AdjustDown(php->a, php->size, 0);
}

3.3.9取根节点数据


HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}

3.3.10判断堆是否为空

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

今天的分享到这里就结束了,感谢大家的阅读!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/193539.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【上海大学数字逻辑实验报告】一、基本门电路

一、 实验目的 熟悉TTL中、小规模集成电路的外形、管脚和使用方法&#xff1b;了解和掌握基本逻辑门电路的输入与输出之间的逻辑关系及使用规则。 二、 实验原理 实现基本逻辑运算和常用逻辑运算的单元电路称为逻辑门电路。门电路通常用高电平VH表示逻辑值“1”&#xff0c;…

前端入职环境安装

前端入职 后环境安装 &#xff0c;内函 nodenvmgit微信开发者工具vscode 的安装包 一.node安装-js运行环境 1.node下载&#xff0c;下载地址Node.js 2.配置淘宝镜像 npm config set registry https://registry.npmmirror.com/ 3.查看配置 npm config list 二.nvm安装-切…

什么是高性能计算岗位

最近有小伙伴咨询什么是高性能计算岗位。 1、什么是高性能计算 高性能计算&#xff0c;在很多招聘信息中也会被标注为 HPC&#xff0c;是 High Performance Computing 的缩写。 目前很多 AI 公司或者从事 AI 的部门招聘都有这个岗位需求&#xff0c;我从某聘上截取了几个有代…

面试常见问题:什么是进程? 什么是线程?进程和线程有什么区别?

1.什么是进程&#xff1f; 进程是操作系统中一个程序在执行过程中的一个实例&#xff0c;每个进程都有自己独立的地址空间&#xff0c;进程间不共享内存。它是程序运行的最小内存单元&#xff1b; 进程特点&#xff1a; 1> 需要占用独立的内存空间&#xff1b; 2>可以并…

R语言阶段复习一

创建一个长度为7的字符向量&#xff0c;元素为"A", "B", "C", "D", "E", "F", "G"&#xff0c;并命名为vec1。 创建一个因子&#xff0c;包含6个水果&#xff1a;"apple", "banana"…

Selenium-介绍下其他骚操作

Chrome DevTools 简介 Chrome DevTools 是一组直接内置在基于 Chromium 的浏览器&#xff08;如 Chrome、Opera 和 Microsoft Edge&#xff09;中的工具&#xff0c;用于帮助开发人员调试和研究网站。 借助 Chrome DevTools&#xff0c;开发人员可以更深入地访问网站&#xf…

C语言:一个数如果恰好等于除它本身外的因子之和,这个数就称为完数。例如6=1+2+3。编程找出1000以内的所有完数。

分析&#xff1a; 在主函数 main 中&#xff0c;程序首先定义三个整型变量 m、s 和 i&#xff0c;并用于计算和判断完数。然后使用 printf 函数输出提示信息。 接下来&#xff0c;程序使用 for 循环结构&#xff0c;从 2 到 999 遍历所有的数。对于每个遍历到的数 m&#xff0c…

ESP32-Web-Server编程- JS 基础 3

ESP32-Web-Server编程- JS 基础 3 概述 本示例演示通过 button 控件的 onclick 内联属性&#xff0c;实现在网页上点击按钮&#xff0c;切换 LED 灯图标的转变。 示例解析 前端设计 前端代码建立了一个 id 为 “imageLamp” 的图片对象。并建立两个按钮&#xff0c;设计两…

pinyin4j 汉字转拼音包括——多音字

一、Maven 依赖 <dependency><groupId>com.belerweb</groupId><artifactId>pinyin4j</artifactId><version>2.5.1</version> </dependency> 二、通过多音字字典匹配 2.1&#xff0c;先看效果效果 输入&#xff1a;我在重庆…

前缀和与差分

文章目录 前缀和一维前缀和公式CODE 二维前缀和公式CODE 差分一维差分思路作用CODE 二维差分思路CODE 前缀和 一维前缀和 板子题&#xff1a;https://www.acwing.com/activity/content/problem/content/829/ 公式 S [ i ] a [ i ] S [ i − 1 ] S[i] a[i] S[i - 1] S[i]…

大数据Doris(三十):删除数据(Delete)

文章目录 删除数据(Delete) 一、​​​​​​​DELETE FROM Statement(条件删除)

【Cmake】Cmake基础学习

CMake学习 一、基础学习 1. 利用Cmake进行单个源代码构建可执行文件 (1)基础命令 最基本的 CMake项目是由单个源代码文件构建的可执行文件。对于这样的简单项目,只需要一个包含三个命令的 CMakeLists.txt 文件。 注意: 虽然 CMake 支持大写、小写和混合大小写命令,但是…

矩阵置零[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给定一个m x n的矩阵&#xff0c;如果一个元素为0&#xff0c;则将其所在行和列的所有元素都设为0。请使用原地算法。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[…

[C++]六大默认成员函数详解

☃️个人主页&#xff1a;fighting小泽 &#x1f338;作者简介&#xff1a;目前正在学习C和Linux &#x1f33c;博客专栏&#xff1a;C入门 &#x1f3f5;️欢迎关注&#xff1a;评论&#x1f44a;&#x1f3fb;点赞&#x1f44d;&#x1f3fb;留言&#x1f4aa;&#x1f3fb; …

【VUE】There are multiple modules with names that only differ in casing.

报错 There are multiple modules with names that only differ in casing. This can lead to unexpected behavior when compiling on a filesystem with other case-semantic. Use equal casing. Compare these module identifiers: 图示原因&#xff1a;大小写&#xff0c;有…

C#——多线程之异步调用容易出现的问题

C#——多线程之异步调用容易出现的问题 Q1&#xff1a;For中异步调用函数且函数输入具有实时性 Q1&#xff1a;For中异步调用函数且函数输入具有实时性 在项目进行过程中&#xff0c;发现For中用异步调用带有输入参数的函数时&#xff0c;会由于闭包特性&#xff0c;以及Task.…

ELK----日志分析

ELK相关知识 ELK的概念与组件 ELK平台是一套完整的日志集中处理解决方案&#xff0c;将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用&#xff0c; 完成更强大的用户对日志的查询、排序、统计需求。 E&#xff1a;ElasticSearch &#xff08;ES&#xff09; ES是…

C#,《小白学程序》第二十一课:大数的减法(BigInteger Subtract)

1 文本格式 using System; using System.Linq; using System.Text; using System.Collections.Generic; /// <summary> /// 大数的&#xff08;加减乘除&#xff09;四则运算、阶乘运算 /// 乘法计算包括小学生算法、Karatsuba和Toom-Cook3算法 /// </summary> p…

C/C++ 常用加密与解密算法

计算机安全和数据隐私是现代应用程序设计中至关重要的方面。为了确保数据的机密性和完整性&#xff0c;常常需要使用加密和解密算法。C是一种广泛使用的编程语言&#xff0c;提供了许多加密和解密算法的实现。本文将介绍一些在C中常用的加密与解密算法&#xff0c;这其中包括Xo…

力扣373场周赛题解

第一题&#xff1a; 这个题是一个简单题&#xff0c;数据范围也特别小&#xff0c;所以直接使用模拟方式暴力解答。 直接进行行移动的过程&#xff0c;然后检查移动后的结果是否与移动前相同。 代码&#xff1a; ​ public class Solution {// 将指定行循环右移k次pri…