YOLOv8改进 | SAConv可切换空洞卷积(附修改后的C2f+Bottleneck)

论文地址:官方论文地址

代码地址:官方代码地址

一、本文介绍

本文给大家带来的改进机制是可切换的空洞卷积(Switchable Atrous Convolution, SAC)是一种创新的卷积网络机制,专为增强物体检测分割任务中的特征提取而设计。SAC的核心思想是在相同的输入特征上应用不同的空洞率进行卷积,并通过特别设计的开关函数来融合这些不同卷积的结果。这种方法使得网络能够更灵活地适应不同尺度的特征,从而更准确地识别和分割图像中的物体。 通过本文你能够了解到:可切换的空洞卷积的基本原理和框架,能够在你自己的网络结构中进行添加(值得一提的是一个SAConv大概可以降低0.3GFLOPs)。

  专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

实验效果对比->

因为资源有限我发的文章都要做对比实验所以本次实验我只用了一百张图片检测的是安全帽训练了一百个epoch,该结果只能展示出该机制有效,但是并不能产生决定性结果,因为具体的效果还要看你的数据集和实验环境所影响。 

下图分析->这个SAConv精度提升是有一定效果的,但是其主要的优势我在于是可以减少参数量和轻量化的作用。 

目录

一、本文介绍

二、SAConv的机制原理介绍

三、SAConv代码复现 

3.1 SAConv

3.2 替换SAConv的C2f和Bottleneck

四、手把手教你添加SAConv 

4.1 SAConv的添加教程

4.2 SAConv的yaml文件和训练截图

5.2.1 SAConv的yaml文件

5.2.2 SAConv的训练过程截图 

五、SAConv可添加的位置

5.1 推荐SAConv可添加的位置 

5.2图示LSKAttention可添加的位置 

六、本文总结


 

二、SAConv的机制原理介绍

可切换的空洞卷积(Switchable Atrous Convolution,简称SAC)是一种高级的卷积机制,用于在物体检测和分割任务中增强特征提取。以下是SAC的主要原理和机制:

1. 不同空洞率的应用: SAC的核心思想是对相同的输入特征应用不同的空洞率进行卷积。空洞卷积通过在卷积核中引入额外的空间(即空洞),扩大了感受野,而不增加参数数量或计算量。SAC利用这一点来捕获不同尺度的特征。

2. 开关函数的使用: SAC的另一个关键特点是使用开关函数来组合不同空洞率卷积的结果。这些开关函数是空间依赖的,意味着特征图的每个位置可能有不同的开关来控制SAC的输出,从而使网络对于特征的大小和尺度更加灵活。

3. 转换机制: SAC能够将传统的卷积层转换为SAC层。这是通过在不同空洞率的卷积操作中使用相同的权重(除了一个可训练的差异)来实现的。这种转换机制包括一个平均池化层和一个1x1卷积层,以实现开关功能。

4. 结构设计: SAC的架构包括三个主要部分:两个全局上下文模块分别位于SAC组件的前后。这些模块有助于更全面地理解图像内容,使SAC组件能够在更宽泛的上下文中有效地工作。

总结:SAC通过这些创新的设计和机制,提高了网络在处理不同尺度和复杂度的特征时的适应性和准确性,从而在物体检测和分割领域显示出显著的性能提升。

 上图我们能看到其中的关键点如下->

  • 双重观察机制: SAC特别设计了一种机制,它能够对输入特征进行两次观察,但每次使用不同的空洞率。这意味着,同一组输入特征会被两种不同配置的卷积核处理,其中每种配置对应一种特定的空洞率。这样做可以捕获不同尺度的特征信息,从而更全面地理解和分析输入数据。

  • 开关函数的应用: 不同空洞率得到的输出结果随后通过开关函数结合在一起。这些开关决定了如何从两次卷积中选择或融合信息,从而生成最终的输出特征。开关的运作方式可能依赖于特征本身的特性,如其空间位置等。

总结:SAC通过这种“双重观察并结合”的策略,能够有效地处理复杂的特征模式,特别是在尺度变化较大的情况下。这种方法不仅提高了特征提取的灵活性和适应性,而且还提升了物体检测和分割任务中的准确性和效率。

在上图中展示了可切换的空洞卷积(Switchable Atrous Convolution, SAC)的具体实现方式。这里的关键点包括:

  1. 转换传统卷积层为SAC: 他们将骨干网络ResNet中的每一个3x3卷积层都转换为SAC。这种转换使得卷积计算可以在不同的空洞率之间软切换。

  2. 权重共享与训练差异: 重要的一点是,尽管SAC在不同的空洞率间进行切换,但所有这些操作共享相同的权重,只有一个可训练的差异。这种设计减少了模型复杂性,同时保持了灵活性。

  3. 全局上下文模块: SAC结构还包括两个全局上下文模块,这些模块为特征添加了图像级的信息。全局上下文模块有助于网络更好地理解和处理图像的整体内容,从而提高特征提取的质量和准确性。

总结:SAC通过这些机制,允许网络在不同的空洞率之间灵活切换,同时通过全局上下文模块和共享权重的策略,有效地提升了特征的提取和处理能力。这些特性使得SAC在物体检测和分割任务中表现出色。

下面是部分的检测效果图-> 

 

三、SAConv代码复现 

3.1 SAConv

import torch
import torch.nn as nn
from ultralytics.nn.modules.conv import autopad, Conv


class ConvAWS2d(nn.Conv2d):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        self.register_buffer('weight_gamma', torch.ones(self.out_channels, 1, 1, 1))
        self.register_buffer('weight_beta', torch.zeros(self.out_channels, 1, 1, 1))

    def _get_weight(self, weight):
        weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
                                                            keepdim=True).mean(dim=3, keepdim=True)
        weight = weight - weight_mean
        std = torch.sqrt(weight.view(weight.size(0), -1).var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        weight = weight / std
        weight = self.weight_gamma * weight + self.weight_beta
        return weight

    def forward(self, x):
        weight = self._get_weight(self.weight)
        return super()._conv_forward(x, weight, None)

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        self.weight_gamma.data.fill_(-1)
        super()._load_from_state_dict(state_dict, prefix, local_metadata, strict,
                                      missing_keys, unexpected_keys, error_msgs)
        if self.weight_gamma.data.mean() > 0:
            return
        weight = self.weight.data
        weight_mean = weight.data.mean(dim=1, keepdim=True).mean(dim=2,
                                                                 keepdim=True).mean(dim=3, keepdim=True)
        self.weight_beta.data.copy_(weight_mean)
        std = torch.sqrt(weight.view(weight.size(0), -1).var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        self.weight_gamma.data.copy_(std)


class SAConv2d(ConvAWS2d):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 s=1,
                 p=None,
                 g=1,
                 d=1,
                 act=True,
                 bias=True):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=s,
            padding=autopad(kernel_size, p, d),
            dilation=d,
            groups=g,
            bias=bias)
        self.switch = torch.nn.Conv2d(
            self.in_channels,
            1,
            kernel_size=1,
            stride=s,
            bias=True)
        self.switch.weight.data.fill_(0)
        self.switch.bias.data.fill_(1)
        self.weight_diff = torch.nn.Parameter(torch.Tensor(self.weight.size()))
        self.weight_diff.data.zero_()
        self.pre_context = torch.nn.Conv2d(
            self.in_channels,
            self.in_channels,
            kernel_size=1,
            bias=True)
        self.pre_context.weight.data.fill_(0)
        self.pre_context.bias.data.fill_(0)
        self.post_context = torch.nn.Conv2d(
            self.out_channels,
            self.out_channels,
            kernel_size=1,
            bias=True)
        self.post_context.weight.data.fill_(0)
        self.post_context.bias.data.fill_(0)

        self.bn = nn.BatchNorm2d(out_channels)
        self.act = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        # pre-context
        avg_x = torch.nn.functional.adaptive_avg_pool2d(x, output_size=1)
        avg_x = self.pre_context(avg_x)
        avg_x = avg_x.expand_as(x)
        x = x + avg_x
        # switch
        avg_x = torch.nn.functional.pad(x, pad=(2, 2, 2, 2), mode="reflect")
        avg_x = torch.nn.functional.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0)
        switch = self.switch(avg_x)
        # sac
        weight = self._get_weight(self.weight)
        out_s = super()._conv_forward(x, weight, None)
        ori_p = self.padding
        ori_d = self.dilation
        self.padding = tuple(3 * p for p in self.padding)
        self.dilation = tuple(3 * d for d in self.dilation)
        weight = weight + self.weight_diff
        out_l = super()._conv_forward(x, weight, None)
        out = switch * out_s + (1 - switch) * out_l
        self.padding = ori_p
        self.dilation = ori_d
        # post-context
        avg_x = torch.nn.functional.adaptive_avg_pool2d(out, output_size=1)
        avg_x = self.post_context(avg_x)
        avg_x = avg_x.expand_as(out)
        out = out + avg_x
        return self.act(self.bn(out))

3.2 替换SAConv的C2f和Bottleneck

class Bottleneck_SAConv(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = SAConv2d(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
    
    
class C2f_SAConv(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_SAConv(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        x = self.cv1(x)
        x = x.chunk(2, 1)
        y = list(x)
        # y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

四、手把手教你添加SAConv 

4.1 SAConv的添加教程

添加教程这里不再重复介绍、因为专栏内容有许多,添加过程又需要截特别图片会导致文章大家读者也不通顺如果你已经会添加注意力机制了,可以跳过本章节,如果你还不会,大家可以看我下面的文章,里面详细的介绍了拿到一个任意机制(C2f、Conv、Bottleneck、Loss、DetectHead)如何添加到你的网络结构中去。

这个卷积也可以放在C2f和Bottleneck中进行使用可以即插即用,个人觉得放在Bottleneck中效果比较好。

添加教程->YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

4.2 SAConv的yaml文件和训练截图

5.2.1 SAConv的yaml文件

下面的是放在Neck部分的截图,参数我以及设定好了,无需进行传入会根据模型输入自动计算,帮助大家省了一些事。

下面的是放在C2f中的yaml配置。 

5.2.2 SAConv的训练过程截图 

下面是添加了SAConv的训练截图。

下面的是将SAConv机制添加到了C2f和Bottleneck。

 

五、SAConv可添加的位置

5.1 推荐SAConv可添加的位置 

SAConv可以是一种即插即用的卷积,其可以添加的位置有很多,添加的位置不同效果也不同,所以我下面推荐几个添加的位,置大家可以进行参考,当然不一定要按照我推荐的地方添加。

  1. 残差连接中:在残差网络的残差连接中加入SAConv

  2. Neck部分:YOLOv8的Neck部分负责特征融合,这里添加修改后的C2f和SAConv可以帮助模型更有效地融合不同层次的特征。

  3. 检测头中的卷积:在最终的输出层前加入SAConv可以使模型在做出最终预测之前,更加集中注意力于最关键的特征。

文字大家可能看我描述不太懂,大家可以看下面的网络结构图中我进行了标注。

5.2图示LSKAttention可添加的位置 

六、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/191594.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux socket编程(6):IO复用之select原理及例子

文章目录 1 五种I/O模型1.1 阻塞I/O模型1.2 非阻塞I/O模型1.3 I/O复用模型1.4 信号驱动I/O模型1.5 异步I/O模型 2 select函数3 select实战:实现多个套接字监听3.1 客户端3.2 服务端3.3 实验结果3.4 完整代码 在之前的网络编程中,我们遇到了一个问题&…

初识数据结构

归纳编程学习的感悟, 记录奋斗路上的点滴, 希望能帮到一样刻苦的你! 如有不足欢迎指正! 共同学习交流! 🌎欢迎各位→点赞 👍 收藏⭐ 留言​📝 熬过了我们不想要的生活&#xf…

RT-DETR论文阅读笔记(包括YOLO版本训练和官方版本训练)

论文地址:RT-DETR论文地址 代码地址:RT-DETR官方下载地址 大家如果想看更详细训练、推理、部署、验证等教程可以看我的另一篇博客里面有更详细的介绍 内容回顾:详解RT-DETR网络结构/数据集获取/环境搭建/训练/推理/验证/导出/部署 目录 一…

【计算机网络笔记】多路访问控制(MAC)协议——轮转访问MAC协议

系列文章目录 什么是计算机网络? 什么是网络协议? 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能(1)——速率、带宽、延迟 计算机网络性能(2)…

HCIA-RS基础-RIP路由协议

前言: RIP路由协议是一种常用的距离矢量路由协议,广泛应用于小规模网络中。本文将详细介绍RIP路由协议的两个版本:RIPv1和RIPv2,并介绍RIP的常用配置命令。通过学习本文,您将能够掌握RIP协议的基本原理、RIPv1和RIPv2的…

软件工程期末复习(选择+填空+判断)

文章目录 软件工程期末复习一、 选择题 软件工程期末复习 一、 选择题 1.“软件危机”的表现不包括:(c) A、软件产品不能按期交付 B、用户对“已完成的”软件产品时常不满意 C、程序员越来越供不应求 D、软件项目难以管理,维护困…

Java Thread 介绍

线程是操作系统调度的最小单元, 也叫轻量级进程。它被包含在进程之中, 是进程中的实际运作单位。 同一进程可以创建多个线程, 每个线程都有自己独立的一块内存空间, 并且能够访问共享的内存变量。 1 线程的分类 在 Java 中, 线程可以分为 2 种 守护线程: 守护线程是为用户线程…

kali linux英文改中文

如果英语基础较好的同学可以不用调整 反之则需要 找到终端(就是输入命令的那个地方 如下)点击它出现命令终端 切换为root用户,命令为: sudo dpkg-reconfigure locales 然后回车 找到这个zh_CN 然后回车 鼠标下键选中并且回车 输…

耶鲁博弈论笔记

编辑记录: 1126:开个新坑,耶鲁大学的博弈论课程, 和专业相关不大,纯兴趣,尽量写好一点吧 1. 首先指出博弈论是一种研究策略形式的方法,对于经济学中,完全竞争市场只能被动接受均衡…

IT问题解答类型网站源码

问答网是一款为IT工程师提供的问答平台,旨在帮助用户在线获取专业知识和相关问题的答案。在问答网,用户可以轻松找到其他人的问答问题,并在这里寻求解答。如果您有任何想要解决的问题,都可以在此发布问题并得到其他同行的解答。 …

【STL】string类 (下)

目录 1,insert 2,erase 3,find 4,replace 5,rfind 6,substr 7,find_first_of 8,find_first_not_of 9,find_last_of 10,operator 11,ge…

Qt TCP网络上位机的设计(通过网络编程与下位机结合)

目录 TCP 协议基础 QTcpServer 和 QAbstractSocket 主要接口函数 TCP 应用程序 1.服务端 2.客户端 上位机通过网络编程与下位机实现通信 TCP 协议基础 传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于…

Camtasia Studio2024专业的屏幕录制和视频剪辑软件

Camtasia2024专业的屏幕录制和视频剪辑软件3000多万专业人士在全球范围内使用Camtasia展示产品,教授课程,培训他人,以更快的速度和更吸引人的方式进行沟通和屏幕分享。使您在Windows和Mac上进行录屏和剪辑创作专业外观的视频变得更为简单。 …

BGP选路实验

要求 1 使用PreVal策略,确保R4通过R2到达192.168.10.0/24 2 使用AS_Path策略,确保R4通过R3到达192.168.11.0/24 3 配置MED策略,确保R4通过R3到达192.168.12.0/24 4 使用Local Preference策略,确保R1通过R2到达192.168.1.0/24 5 使…

【古诗生成AI实战】之五——加载模型进行古诗生成

回顾上一篇博客,我们已经成功地训练了我们的模型,并将其保存下来。这是一个重要的里程碑,因为训练好的模型是我们进行文本生成的基础。 现在,接下来的步骤是加载这个训练好的模型,然后使用它来生成古诗。 本章的内容属…

打印菱形-第11届蓝桥杯选拔赛Python真题精选

[导读]:超平老师的Scratch蓝桥杯真题解读系列在推出之后,受到了广大老师和家长的好评,非常感谢各位的认可和厚爱。作为回馈,超平老师计划推出《Python蓝桥杯真题解析100讲》,这是解读系列的第9讲。 打印菱形&#xff…

Android 虚拟机与类加载机制

1、Dalvik 虚拟机 Android 应用程序运行在 Dalvik/Art 虚拟机上,并且每一个应用程序都有一个单独的 Dalvik/Art 虚拟机实例。 1.1 JVM 与 Dalvik Dalvik 虚拟机也算是一个 Java 虚拟机,它是按照 JVM 虚拟机规范实现的,二者的特性差不多&am…

爬楼梯(力扣LeetCode)动态规划

爬楼梯 题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 示例 1: 输入:n 2 输出:2 解释:有两种方法可以爬到楼顶。 1 阶 1 阶2 阶 示…

树状数组专题

折叠 区间修改,区间查询,这一类题通常都可以使用线段树解决,但对于此题,树状数组同样可以,而且常数较小,代码简单。 思路: 考虑使用树状数组去维护差分数组,即对于 a i a_i ai​,我们…

找不到vcomp120.dll该如何修复?vcomp120.dll丢失的5个可行解决方法

本文将对vcomp120.dll文件的丢失原因进行详细分析,并提供五个有效的修复方法。同时,本文还将深入介绍vcomp120.dll文件的作用及其在程序运行中的重要性。 一、vcomp120.dll文件丢失原因 操作系统损坏:由于病毒感染、系统错误等原因&#xf…