python:傅里叶分析,傅里叶变换 FFT

使用python进行傅里叶分析,傅里叶变换 FFT  的一些关键概念的引入:

1.1.离散傅里叶变换(DFT)
    离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,经过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。可是它的致命缺点是:计算量太大,时间复杂度过高,当采样点数过高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。
1.2.快速傅里叶变换(FFT)
    计算量更小的离散傅里叶的一种实现方法。快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
1.3.采样频率以及采样定率
采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫做采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。

采样定理 ,又称香农采样定理,奈奎斯特采样定理,是信息论,特别是通信与信号处理学科中的一个重要基本结论。采样定理指出,若是信号是带限的,而且采样频率高于信号带宽的两倍,那么,原来的连续信号能够从采样样本中彻底重建出来。

1.4.如何理解采样定理
    在对连续信号进行离散化的过程当中,不免会损失不少信息,就拿一个简单地正弦波而言,若是我1秒内就选择一个点,很显然,损失的信号太多了,光着一个点我根本不知道这个正弦信号究竟是什么样子的,天然也没有办法根据这一个采样点进行正弦波的还原,很明显,我采样的点越密集,那越接近原来的正弦波原始的样子,天然损失的信息越少,越方便还原正弦波。

采样定理说明采样频率与信号频率之间的关系,是连续信号离散化的基本依据。 它为采样率创建了一个足够的条件,该采样率容许离散采样序列从有限带宽的连续时间信号中捕获全部信息。
编写 test_fft_1.py 如下

# -*- coding: utf-8 -*-
""" 使用scipy包实现快速傅里叶变换 """
import numpy as np
from scipy.fftpack import fft, ifft
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei'] #显示中文
mpl.rcParams['axes.unicode_minus'] = False   #显示负号

# 采样点选择1400个,由于设置的信号频率份量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,
# 因此这里设置采样频率为1400赫兹(即一秒内有1400个采样点,同样意思的)
x = np.linspace(0,1,1400)
#设置须要采样的信号,频率份量有200,400和600
y = 7*np.sin(2*np.pi*200*x) + 5*np.sin(2*np.pi*400*x) + 3*np.sin(2*np.pi*600*x)
fft_y = fft(y) #快速傅里叶变换
N= 1400
x = np.arange(N) # 频率个数
half_x = x[range(int(N/2))] #取一半区间
abs_y = np.abs(fft_y) # 取复数的绝对值,即复数的模(双边频谱)
angle_y = np.angle(fft_y) #取复数的角度
normalization_y = abs_y/N #归一化处理(双边频谱)
normalization_half_y = normalization_y[range(int(N/2))] #因为对称性,只取一半区间(单边频谱)
plt.subplot(231)
plt.plot(x,y) 
plt.title('原始波形')
plt.subplot(232)
plt.plot(x,fft_y,'black')
plt.title('双边振幅谱(未求振幅绝对值)',fontsize=9,color='black')
plt.subplot(233)
plt.plot(x,abs_y,'r')
plt.title('双边振幅谱(未归一化)',fontsize=9,color='red')
plt.subplot(234)
plt.plot(x,angle_y,'violet')
plt.title('双边相位谱(未归一化)',fontsize=9,color='violet')
plt.subplot(235)
plt.plot(x,normalization_y,'g')
plt.title('双边振幅谱(归一化)',fontsize=9,color='green')
plt.subplot(236)
plt.plot(half_x,normalization_half_y,'blue')
plt.title('单边振幅谱(归一化)',fontsize=9,color='blue')
plt.show()

运行 python test_fft_1.py


傅里叶定理指出,任何频率为f0的周期信号都可以通过将频率为f0,2f0,3f0,4f0,5f0等的“正弦波”(正弦波)相加而精确地构建。将周期时域信号分割为正弦波称为傅里叶分析。
“傅里叶级数”中的每个正弦曲线的特征在于频率振幅,以及阶段f0被称为基频。
2f0、3f0、4f0等被称为谐波。

编写 test_sawtooth.py 如下

# -*- coding: utf-8 -*-
"""使用scipy中的 sawtooth()生成了频率为f=200Hz的锯齿信号,持续时间为2秒。"""
import matplotlib.pyplot as plt  # plotting
import seaborn as sns            # styling (uncomment if you want)
import numpy as np
from scipy import signal as sig     # for easy sawtooth signal generation

sns.set()
fs=8000                   # sampling frequency
t = np.arange(0, 2, 1/fs) # time vector
f = 200                   # frequency in Hz for scipy sawtooth
saw_tooth = sig.sawtooth(2 * np.pi * f * t)
# plot first 20 ms (=160 samples at sampling frequency of 8000 Hz)
plt.subplot(1,2,1)
plt.plot(t[0:160], saw_tooth[0:160], '--', label='scipy sawtooth')
plt.xlabel('time $t$ in seconds')
plt.ylabel('$x(t)$')
plt.legend()

# calculate the spectum (frequency domain representation)
FFT_length = 2**15 # take a power of two which is larger than the signal length
f = np.linspace(0, fs/2, num=int(FFT_length/2+1))
spectrum = np.abs(np.fft.rfft(saw_tooth, n=FFT_length))
# plot the spectrum
plt.subplot(1,2,2)
plt.plot(f,spectrum)
plt.xlabel('frequency $f$ in Hz')
plt.ylabel('$x(f)$')
plt.tight_layout() # this allowes for some space for the title text.
plt.show()

运行 pytho test_sawtooth.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189778.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

摆脱无用代码的负担:TreeShaking 的魔力

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

【教学类-06-12】20231126 (一)如何让加减乘除题目从小到大排序(以1-20之间加法为例,做正序排列用)

结果展示 优化后 优化前 背景需求: 生成列表 单独抽取显示题目排序方法 存在问题: 我希望 00 01 02……这样排序,但是实际上,除了第一个加数会从小到大排序,第二个被加数的第十位数和个位数都会从小到大排序,也就是…

NeoPreference延伸:为SharedPreferences配置项生成配置页面

代码地址:https://github.com/Nagi1225/NeoPreference.git 最初在开发NeoPreference这个SharedPreferences工具的时候,就期望完成三个目标: 代码简洁,新增配置项的时候一行代码(最多两行);读写…

线程的常用方法-wait和notify以及线程的结束方式

再复习一下Java中的线程的状态图 wait和sleep的区别是:wait需要先持有锁(wait需要再synchronized代码块中执行),执行后会让出锁。而sleep不需要先持有锁,执行后也不会释放锁(有锁的话抱着锁睡觉&#xff09…

SpringBoot 环境使用 Redis + AOP + 自定义注解实现接口幂等性

目录 一、前言二、主流实现方案介绍2.1、前端按钮做加载状态限制(必备)2.2、客户端使用唯一标识符2.3、服务端通过检测请求参数进行幂等校验(本文使用) 三、代码实现3.1、POM3.2、application.yml3.3、Redis配置类3.4、自定义注解…

基于Haclon的标签旋转项目案例

项目要求: 图为HALCON附图“25interleaved_exposure_04”,里面为旋转的二维码标签,请将其旋转到水平位置。 项目知识: 在HALCON中进行图像平移和旋转通常有以下步骤: (1)通过hom_mat2d_ident…

jQuery_03 dom对象和jQuery对象的互相转换

dom对象和jQuery对象 dom对象 jQuery对象 在一个文件中同时存在两种对象 dom对象: 通过js中的document对象获取的对象 或者创建的对象 jQuery对象: 通过jQuery中的函数获取的对象。 为什么使用dom或jQuery对象呢? 目的是 要使用dom对象的函数或者属性 以及呢 要…

<JavaEE> 线程的五种创建方法 和 查看线程的两种方式

目录 一、线程的创建方法 1.1 继承 Thread -> 重写 run 方法 1.2 使用匿名内部类 -> 继承 Thread -> 重写 run 方法 1.3 实现 Runnable 接口 -> 重写 run 方法 1.4 使用匿名内部类 -> 实现 Runnable 接口 -> 重写 run 方法 1.5 使用 lambda 表达式 二…

Self Distillation 自蒸馏论文解读

paper:Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation official implementation: https://github.com/luanyunteng/pytorch-be-your-own-teacher 前言 知识蒸馏作为一种流行的压缩方法&#…

五种多目标优化算法(MOGWO、MOLPB、MOJS、NSGA3、MOPSO)求解微电网多目标优化调度(MATLAB代码)

一、多目标优化算法简介 (1)多目标灰狼优化算法MOGWO 多目标应用:基于多目标灰狼优化算法MOGWO求解微电网多目标优化调度(MATLAB代码)-CSDN博客 (2)多目标学习者行为优化算法MOLPB 多目标学习…

ps5ps4游戏室如何计时?计费系统怎么查看游戏时间以及收费如何管理

ps5ps4游戏室如何计时?计费系统怎么查看游戏时间以及收费如何管理 1、ps5ps4游戏室如何计时? 下图以佳易王计时计费软件V17.9为例说明 在开始计时的时候,只需点 开始计时按钮,那么开台时间和使用的时间长度项目显示在屏幕上&am…

如何判断一个题目用“贪心/动态规划“还是用“BFS/DFS”方法解决

1 总结 1.1 贪心、动态规划和BFS/DFS题解的关系 一般能使用贪心、动态规划解决一个问题时,使用BFS,DFS也能解决这个题,但是反之不能成立。 1.2 2 贪心 -> BFS/DFS 2.1 跳跃游戏1和3的异同 这两道题,“跳跃游戏”&#xf…

靡靡之音 天籁之声 ——Adobe Audition

上一期讲到了和Pr配合使用的字幕插件Arctime Pro的相关介绍。相信还记得的小伙伴应该记得我还提到过一个软件叫做Au。 当人们对字幕需求的逐渐满足,我们便开始追求更高层次的享受,当视觉享受在进步,听觉享受想必也不能被落下! Au即…

Flutter桌面应用开发之毛玻璃效果

目录 效果实现方案依赖库支持平台实现步骤注意事项话题扩展 毛玻璃效果:毛玻璃效果是一种模糊化的视觉效果,常用于图像处理和界面设计中。它可以通过在图像或界面元素上应用高斯模糊来实现。使用毛玻璃效果可以增加图像或界面元素的柔和感,同…

一、深入简出串口(USRT)通信——基本概念。

一、前言 串口到底是什么?简单来说一句话就可以解释,串口就是一种通信协议。 看到这里可能大家会觉得你这不是放屁么,说了跟没说一样。所以这里做前言来描述,大家要先对通信协议有一个下意识地认识才能在学习串口的时候不至于迷茫…

spring循环依赖

Bean的生命周期 这里不会对Bean的生命周期进行详细的描述,只描述一下大概的过程。 Bean的生命周期指的就是:在Spring中,Bean是如何生成的? 被Spring管理的对象叫做Bean。Bean的生成步骤如下: Spring扫描class得到Bean…

yolo系列中的一些评价指标说明

文章目录 一. 混淆矩阵二. 准确度(Accuracy)三. 精确度(Precision)四. 召回率(Recall)五. F1-score六. P-R曲线七. AP八. mAP九. mAP0.5十. mAP[0.5:0.95] 一. 混淆矩阵 TP (True positives):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例…

计算机编程基础教程,中文编程工具下载,编程构件组合按钮

计算机编程基础教程,中文编程工具下载,编程构件组合按钮 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件&#xff0c…

人力资源管理后台 === 登陆+主页灵鉴权

目录 1. 分析登录流程 2. Vuex中用户模块的实现 3.Vue-cli代理解决跨域 4.axios封装 5.环境区分 6. 登录联调 7.主页权限验证-鉴权 1. 分析登录流程 传统思路都是登录校验通过之后,直接调用接口,获取token之后,跳转到主页。 vue-elemen…

C++二分查找:统计点对的数目

本题其它解法 C双指针算法:统计点对的数目 本周推荐阅读 C二分算法:得到子序列的最少操作次数 本文涉及的基础知识点 二分查找算法合集 题目 给你一个无向图,无向图由整数 n ,表示图中节点的数目,和 edges 组成…