时间序列预测 — Informer实现多变量负荷预测(PyTorch)

目录

1 实验数据集

2 如何运行自己的数据集

3 报错分析


1 实验数据集

实验数据集采用数据集4:2016年电工数学建模竞赛负荷预测数据集(下载链接),数据集包含日期、最高温度℃ 、最低温度℃、平均温度℃ 、相对湿度(平均) 、降雨量(mm)、日需求负荷(KWh),时间间隔为1H。

在使用数据之前相对数据进行处理,用其他数据集时也是同样的处理方法。首先读取数据,发数据不是UTF-8格式,通过添加encoding = 'gbk'读取数据,模型传入的数据必须是UTF-8格式

df= pd.read_table('E:\\课题\\08数据集\\2016年电工数学建模竞赛负荷预测数据集\\2016年电工数学建模竞赛负荷预测数据集.txt',encoding = 'gbk')

然后检查数据是否有缺失值:

df.isnull().sum()

发现数据存在少量缺失值,分析数据特点,可以通过前项或后项填充填补缺失值:

df = df.fillna(method='ffill')

后面需要将表格列名改为英文,时间列名为date,不然后面运行时会报错:

df.columns = ["date","max_temperature(℃)","Min_temperature(℃ )","Average_temperature(℃)","Relative_humidity(average)","Rainfall(mm)","Load"]

最后将数据按UTF-8格式保存

load.to_csv('E:\\课题\\08数据集\\2016年电工数学建模竞赛负荷预测数据集\\2016年电工数学建模竞赛负荷预测数据集_处理后.csv', index=False,encoding = 'utf-8')

最后可视化看一下数据:

# 可视化
load.drop(['date'], axis=1, inplace=True)
cols = list(load.columns)
fig = plt.figure(figsize=(16,6))
plt.tight_layout()
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=0.8)
for i in range(len(cols)):
    ax = fig.add_subplot(3,2,i+1)
    ax.plot(load.iloc[:,i])
    ax.set_title(cols[i])
    # plt.subplots_adjust(hspace=1)

 

2 如何运行自己的数据集

前面两篇文章介绍了论文的原理、代码解析和官方数据集训练和运行,那么大家在利用模型训练自己的数据集的时候需要修改的几处地方。

parser.add_argument('--data', type=str, default='custom', help='data')
parser.add_argument('--root_path', type=str, default='./data/Load/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='load.csv', help='data file')
parser.add_argument('--features', type=str, default='MS', help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='Load', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h', help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
  • data:必须填写 default='custom',也就是改为自定义的数据
  • root_path:填写数据文件夹路径
  • data_path:填写具体的数据文件名
  • features:前面有讲解,features有三个选项(M,MS,S),分别是多元预测多元,多元预测单元,单元预测单元,具体是看你自己的数据集。
  • target:就是你数据集中你想要知道那列的预测值的列名,这里改为Load
  • freq:就是你两条数据之间的时间间隔。
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length of Informer encoder')
parser.add_argument('--label_len', type=int, default=48, help='start token length of Informer decoder')
parser.add_argument('--pred_len', type=int, default=24, help='prediction sequence length')
  • seq_len:用过去的多少条数据来预测未来的数据
  • label_len:可以裂解为更高的权重占比的部分要小于seq_len
  • pred_len:预测未来多少个时间点的数据
parser.add_argument('--enc_in', type=int, default=6, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=6, help='decoder input size')
parser.add_argument('--c_out', type=int, default=1, help='output size')
  • enc_in:你数据有多少列,要减去时间那一列,这里我是输入8列数据但是有一列是时间所以就填写7
  • dec_in:同上
  • c_out:这里有一些不同如果你的features填写的是M那么和上面就一样,如果填写的MS那么这里要输入1因为你的输出只有一列数据。
## 解析数据集的信息 ##
# 字典data_parser中包含了不同数据集的信息,键值为数据集名称('ETTh1'等),对应一个包含.csv数据文件名
# 目标特征、M、S和MS等参数的字典
data_parser = {
    'ETTh1':{'data':'ETTh1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
    'ETTh2':{'data':'ETTh2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
    'ETTm1':{'data':'ETTm1.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
    'ETTm2':{'data':'ETTm2.csv','T':'OT','M':[7,7,7],'S':[1,1,1],'MS':[7,7,1]},
    'WTH':{'data':'WTH.csv','T':'WetBulbCelsius','M':[12,12,12],'S':[1,1,1],'MS':[12,12,1]},
    'ECL':{'data':'ECL.csv','T':'MT_320','M':[321,321,321],'S':[1,1,1],'MS':[321,321,1]},
    'Solar':{'data':'solar_AL.csv','T':'POWER_136','M':[137,137,137],'S':[1,1,1],'MS':[137,137,1]},
    'Custom':{'data':'load.csv','T':'Load','M':[137,137,137],'S':[1,1,1],'MS':[6,6,1]},
}

预测结果保存在result文件下,保存格式为numpy,可以通过下面的脚本进行可视化预测结果:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 指定.npy文件路径
file_path1 = "results/informer_ETTh1_ftM_sl96_ll48_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_0/true.npy"
file_path2 = "results/informer_ETTh1_ftM_sl96_ll48_pl24_dm512_nh8_el2_dl1_df2048_atprob_fc5_ebtimeF_dtTrue_mxTrue_test_1/pred.npy"

# 使用NumPy加载.npy文件
true_value = []
pred_value = []
data1 = np.load(file_path1)
data2 = np.load(file_path2)
print(data2)
for i in range(24):
    true_value.append(data2[0][i][6])
    pred_value.append(data1[0][i][6])

# 打印内容
print(true_value)
print(pred_value)

#保存数据
df = pd.DataFrame({'real': true_value, 'pred': pred_value})
df.to_csv('results.csv', index=False)

#绘制图形
fig = plt.figure(figsize=( 16, 8))
plt.plot(df['real'], marker='o', markersize=8)
plt.plot(df['pred'], marker='o', markersize=8)
plt.tick_params(labelsize = 28)
plt.legend(['real','pred'],fontsize=28)
plt.show()

最后预测的效果如下,发现并不是太好,后续看参数调优后是否能提升模型预测效果。 

3 报错分析

报错1:UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 56-57: invalid continuation byte,具体来说,'utf-8' 编解码器无法解码文件中的某些字节,因为它们不符合 UTF-8 编码的规则。

  File "D:\Progeam Files\python\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header
  File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows
  File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status
  File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 56-57: invalid continuation byte

解决办法:

(1) 根据提示,要将数据更改'utf-8'格式,最简便的方法将数据用记事本打开,另存为是通过UTF-8格式保存  

(2) 尝试使用其他编解码器(如 'latin1')来读取文件,或者在读取文件时指定正确的编码格式。

 报错2:ValueError: list.remove(x): x not in list,试从列表中删除两个元素,但是这两个元素中至少有一个不在列表中。

File "E:\课题\07代码\Informer2020-main\Informer2020-main\data\data_loader.py", line 241, in __read_data__
cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date')
ValueError: list.remove(x): x not in list

解决办法:在没有找到具体原因的时候可以在删除元素之前先检查一下列表中是否包含要删除的元素,或者使用 try-except 语句来捕获异常,以便在元素不存在时不会导致程序中断。通过检查,数据中的列名最好改为英文,避免产生乱码。

if self.cols:
    cols=self.cols.copy()
    cols.remove(self.target)
else:
    # 添加调试信息
    cols = list(df_raw.columns)
    print(cols)  # 输出列的内容
    if self.target in cols:
        cols.remove(self.target)
    else:
        print(f"{self.target} not in columns")
    if 'date' in cols:
        cols.remove('date')
    else:
        print("date not in columns")
    # 添加调试信息

    cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date')
df_raw = df_raw[['date']+cols+[self.target]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/189500.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Kibana部署

服务器 安装软件主机名IP地址系统版本配置KibanaElk10.3.145.14centos7.5.18042核4G软件版本:nginx-1.14.2、kibana-7.13.2-linux-x86_64.tar.gz 1. 安装配置Kibana (1)安装 [rootelk ~]# tar zxf kibana-7.13.2-linux-x86_64.tar.gz -C…

laravel实现发送邮件功能

Laravel提供了简单易用的邮件发送功能,使用SMTP、Mailgun、Sendmail等多种驱动程序,以及模板引擎将邮件内容进行渲染。 1.在项目目录.env配置email信息 MAIL_MAILERsmtp MAIL_HOSTsmtp.qq.com MAIL_PORT465 MAIL_FROM_ADDRESSuserqq.com MAIL_USERNAME…

【理解ARM架构】 散列文件 | 重定位

🐱作者:一只大喵咪1201 🐱专栏:《理解ARM架构》 🔥格言:你只管努力,剩下的交给时间! 目录 🏓引出重定位🏓散列文件🏓可读可写数据段重定位&#…

php的字符转义函数有那些,是干什么的

在 PHP 中,字符转义函数是用于处理字符串中的特殊字符,以防止这些字符被误解、滥用或引起安全问题的一组函数。这些函数的主要作用是确保在将用户提供的数据插入到数据库、构建 HTML 输出或进行其他与安全相关的操作时,不会导致潜在的安全漏洞…

6.12找树左下角的值(LC513-M)

算法: 这道题适合用迭代法,层序遍历:按层遍历,每次把每层最左边的值保存、更新到result里面。 看看Java怎么实现层序遍历的(用队列): /*** Definition for a binary tree node.* public clas…

C#,《小白学程序》第九课:堆栈(Stack),先进后出的数据型式

1 文本格式 /// <summary> /// 《小白学程序》第九课&#xff1a;堆栈&#xff08;Stack&#xff09; /// 堆栈与队列是相似的数据形态&#xff1b;特点是&#xff1a;先进后出&#xff1b; /// 比如&#xff1a;狭窄的电梯&#xff0c;先进去的人只能最后出来&#xff1…

Python中zip()函数用法解析

打包 zip() 函数是 Python 中一个非常有用的函数&#xff0c;它用于将多个可迭代对象组合成一个元组序列&#xff0c;依次将来自每个可迭代对象的元素打包在一起。 基本的语法是 zip(iterable1, iterable2, ...)&#xff0c;其中 iterable1, iterable2, ... 是要合并的可迭代…

Kubernetes技术与架构-配置

一般情况下&#xff0c;Kubernetes使用yaml文件格式定义配置文件&#xff0c;配置文件须指定对应的API稳定版本号&#xff0c;将配置文件进行版本控制、在发布新版本的过程中出问题时可以执行版本回滚操作&#xff0c;将相关联的对象定义在同一个配置文件中、从而更容易地管理&…

队列详解(C语言实现)

文章目录 写在前面1 队列的定义2 队列的初始化3 数据入队列4 数据出队列5 获取队头元素6 获取队尾元素7 获取队列元素个数8 判断队列是否为空8 队列的销毁 写在前面 本片文章详细介绍了另外两种存储逻辑关系为 “一对一” 的数据结构——栈和队列中的队列&#xff0c;并使用C语…

openEuler Linux 部署 FineBi

openEuler Linux 部署 FineBi 部署环境 环境版本openEuler Linux22.03MySQL8.0.35JDK1.8FineBi6.0 环境准备 升级系统内核和软件 yum -y updatereboot安装常用工具软件 yum -y install vim tar net-tools 安装MySQL8 将 MySQL Yum 存储库添加到系统的存储库列表中 sudo…

RocketMq 队列(MessageQueue)

RocketMq是阿里出品&#xff08;基于MetaQ&#xff09;的开源中间件&#xff0c;已捐赠给Apache基金会并成为Apache的顶级项目。基于java语言实现&#xff0c;十万级数据吞吐量&#xff0c;ms级处理速度&#xff0c;分布式架构&#xff0c;功能强大&#xff0c;扩展性强。 官方…

【LeetCode:828. 统计子串中的唯一字符 | 贡献法 乘法原理】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

蓝桥杯第四场双周赛(1~6)

1、水题 2、模拟题&#xff0c;写个函数即可 #define pb push_back #define x first #define y second #define int long long #define endl \n const LL maxn 4e057; const LL N 5e0510; const LL mod 1e097; const int inf 0x3f3f; const LL llinf 5e18;typedef pair…

十大排序之冒泡排序与快速排序(详解)

文章目录 &#x1f412;个人主页&#x1f3c5;算法思维框架&#x1f4d6;前言&#xff1a; &#x1f380;冒泡排序 时间复杂度O(n^2)&#x1f387;1. 算法步骤思想&#x1f387;2.动画实现&#x1f387; 3.代码实现&#x1f387;4.代码优化&#xff08;添加标志量&#xff09; …

NX二次开发UF_CURVE_ask_curve_fit_data 函数介绍

文章作者&#xff1a;里海 来源网站&#xff1a;https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_curve_fit_data Defined in: uf_curve.h int UF_CURVE_ask_curve_fit_data(tag_t curve_feature, UF_CURVE_curve_fit_data * curve_fit_data ) overview 概述 Ask c…

【Spring集成MyBatis】MyBatis注解开发

文章目录 1. MyBatis的常用注解2. 基于注解的MyBatis增删改查增删改查完整代码加载映射关系测试代码 3. MyBatis的注解实现复杂映射开发一对一操作的实现一对一操作实现的第二种方式一对多操作的实现多对多操作实现 1. MyBatis的常用注解 2. 基于注解的MyBatis增删改查 使用注…

【Kotlin】引入与基础语法

文章目录 Kotlin的特性Kotlin优势Kotlin的安卓项目变量变量保存了指向对象的引用优先使用val来避免副作用 后端变量Backing Fields延迟初始化 Kotlin的特性 它更加易表现&#xff1a;这是它最重要的优点之一。你可以编写少得多的代码。Kotlin是一种兼容Java的语言Kotlin比Java…

针对哈希冲突的解决方法

了解哈希表和哈希冲突是什么 哈希表&#xff1a;是一种实现关联数组抽象数据类型的数据结构&#xff0c;这种结构可以将关键码映射到给定值。简单来说哈希表&#xff08;key-value&#xff09;之间存在一个映射关系&#xff0c;是键值对的关系&#xff0c;一个键对应一个值。 …

顶级安卓数据恢复工具—— 15 个 Android 数据恢复程序榜单

探索并比较顶级 Android 数据恢复软件&#xff0c;并选择最好的 Android 恢复应用程序来恢复您的宝贵数据&#xff1a; 特别是您的智能手机或 Android 设备可以完成许多繁重的工作&#xff0c;其中最有用的是存储数据。Android 设备可以伪装成照片、视频、电子邮件甚至敏感商业…

MVCC多版本并发控制相关面试题整理

多版本并发控制是一种用于支持并发事务的数据库管理系统技术&#xff0c;它允许多个事务同时访问数据库&#xff0c;而不会相互干扰或导致数据不一致。MVCC通过在数据库中维护不同版本的数据来实现这一目标&#xff0c;从而允许每个事务看到一致的数据库快照。 并发导致的问题…