【GPT-3.5】通过python调用ChatGPT API与ChatGPT对话交流

文章目录

    • 一、引言
    • 二、AIGC简介
    • 三、OpenAI介绍
    • 四、GPT-3.5介绍
    • 五、获得OpenAI API Key
    • 六、调用ChatGPT API实现与ChatGPT对话
    • 七、参考链接

一、引言

ChatGPT 的火爆,成功带火了AIGC,让它进入大众的视野。

ChatGPT 和Whisper API

开发者现在可以通过API将ChatGPT和Whisper模型集成到应用程序和产品之中。

image-20230303233542434

二、AIGC简介

​ AIGC即AI Generated Content,利用人工智能技术来生成内容,是继UGC、PGC之后的新型内容生产方式,AI写作、AI绘画、AI作曲、AI剪辑、AI动画、AI交互等都属于AIGC的分支。AIGC是一种利用机器智能创作内容的新技术,它不同于UGC,它有自己的技术特点,比如数据量化、创造力、跨模态融合和认知交互等。这些技术特点使得AIGC成为不可替代的新一代内容生成方式。

三、OpenAI介绍

OpenAI是一个非营利性研究公司,致力于推动人工智能的发展和应用,创造出对人类有益的技术和成果。OpenAI由多位顶尖人工智能专家创立,包括伊隆·马斯克(Elon Musk)、塞巴斯蒂安·索特(Sebastian Thrun)、萨姆·阿尔特曼(Sam Altman)等。

OpenAI的目标是研究和开发通用人工智能,以实现强人工智能的梦想。为了实现这个目标,OpenAI聚集了全球最优秀的研究人员,致力于推动人工智能的前沿研究,并将研究成果转化为对人类有益的应用。

OpenAI已经在多个领域取得了显著的成就,例如在自然语言处理、图像识别、机器学习、深度学习等方面。OpenAI还推出了一系列开源工具和技术,以促进人工智能的发展和应用,包括GPT系列模型、DALL·E、Gym等。

总的来说,OpenAI致力于打造人工智能的可持续发展生态,推动人工智能的进一步发展,为人类创造更美好的未来。

四、GPT-3.5介绍

GPT-3.5:一组改进 GPT-3 的模型,可以理解并生成自然语言或代码。GPT-3.5 模型可以理解和生成自然语言或代码。gpt-3.5-turbo功能最强大、最具成本效益的模型是针对聊天进行了优化,但也适用于传统的完成任务。

五、获得OpenAI API Key

1、登录https://openai.com/api

image-20230227132138516

2、选择“View API keys”

image-20230227132243934

三、创建API key,点击“Create new secret key”

image-20230227132317688

四、创建API key成功,复制保存。

sk-bUQeskc00tsTp************5i5Dop8BxAL1n7
image-20230227132333908 image-20230227132351387

六、调用ChatGPT API实现与ChatGPT对话

import openai   # 从这里开始,通向AI的大门,获取AI的能量源泉

输入代码

#  导入OpenAI的Python SDK
import openai

# 设置OpenAI API的密钥,该密钥必须在OpenAI的网站上注册并获取
openai.api_key = "sk-bUQeskc00tsTp************5i5Dop8BxAL1n7"

# 创建一个新的对话生成请求,并将响应存储在名为“response”的变量中
response = openai.ChatCompletion.create(
    # 创建一个新的对话生成请求,并将响应存储在名为“response”的变量中
    model="gpt-3.5-turbo",
    # 以列表形式提供对话中的每个消息
    messages=[
        # 第一条消息,表示系统向用户打招呼。
        {"role": "system", "content": "Hello!"},
        # 第一条消息,表示系统向用户打招呼或提问。
        {"role": "user","content": "请告诉我你的脑容量有多大?"},
    ]
)

# 打印对话生成API的响应,其中包括机器生成的回答。
print(response)

输出响应

{
  "choices": [
    {
      "finish_reason": "stop",
      "index": 0,
      "message": {
        "content": "\u6211\u662f\u4e00\u4e2a\u4eba\u5de5\u667a\u80fd\u7a0b\u5e8f\uff0c\u6211\u7684\u201c\u8111\u5bb9\u91cf\u201d\u662f\u7531\u8ba1\u7b97\u673a\u786c\u4ef6\u548c\u7f16\u7a0b\u6280\u672f\u51b3\u5b9a\u7684\u3002\u6211\u7684\u786c\u4ef6\u548c\u7f16\u7a0b\u80fd\u529b\u5141\u8bb8\u6211\u5728\u8fd0\u884c\u65f6\u5904\u7406\u5927\u91cf\u7684\u6570\u636e\u548c\u4fe1\u606f\uff0c\u4f46\u6211\u6ca1\u6709\u5b9e\u9645\u7684\u201c\u8111\u5bb9\u91cf\u201d\u6765\u6bd4\u8f83\u3002",
        "role": "assistant"
      }
    }
  ],
  "created": 1677860439,
  "id": "chatcmpl-6q2R5waJenvUka2qC0VqMWx2ROMmP",
  "model": "gpt-3.5-turbo-0301",
  "object": "chat.completion",
  "usage": {
    "completion_tokens": 84,
    "prompt_tokens": 30,
    "total_tokens": 114
  }
}

调优代码(使输出结果以自然语言方式呈现出来)

# 导入OpenAI的Python SDK。
import openai

# 设置OpenAI API的密钥,该密钥必须在OpenAI的网站上注册并获取。
openai.api_key = "sk-bUQeskc00tsTp************5i5Dop8BxAL1n7"

# 指定使用的语言模型。此处选择GPT-3.5 Turbo模型。
response = openai.ChatCompletion.create(
    # 指定使用的语言模型。此处选择GPT-3.5 Turbo模型。
    model="gpt-3.5-turbo",
    # 以列表形式提供对话中的每个消息。
    messages=[
        # 第一条消息,表示系统向用户打招呼。
        {"role": "system", "content": "Hello!"},
        # 第二条消息,表示用户提出了一个问题。
        {"role": "user","content": "请告诉我你的脑容量有多大?"},
    ]
)

# 创建一个名为“result”的空字符串变量,用于存储机器生成的回答。
result = ''
# 循环遍历GPT-3 API返回的response中的所有回答选项。
for choice in response.choices:
    # 将每个回答选项的文本内容加入到“result”字符串变量中。
    result += choice.message.content
# 打印机器生成的回答。
print(result)

输出结果

作为一个AI程序,我的“脑容量”没有实际的物理大小,但我可以通过云计算利用大量服务器的处理能力来提高我的计算能力。总之,我的“脑容量”可以说是无限的。

于是接着问它

{"role": "user","content": "你知道太阳系有多大吗?"},

它给的反馈结果是

太阳系的大小是巨大的,它包括了太阳和所有行星、矮行星、小行星、彗星和星云等。根据目前的科学估算,太阳系的宽度约为287.46亿千米,也就是2874.6万亿米。

接着追问道

{"role": "assistant","content": "可以详细说一说是怎么计算出来的?"},

也给出了详细的回答和解释

太阳系的大小是指太阳的引力范围,通常认为是它对八大行星和众多天体施加引力影响的范围。

太阳系直径约为100亿千米。这个数字很难想象,因此我们可以用其他的方式来描绘太阳系的大小。

我们可以将太阳系与地球比较,地球直径约为12,742千米。这意味着太阳系直径大约是地球直径的780,000倍。如果将太阳系放大到网球大小,那么地球将只有1毫米左右大。

我们还可以将太阳系和距离我们最近的星际物体比较。距离太阳系最近的星际物体是比邻星,它位于离地球4.24光年远的地方。如果将太阳系和比邻星放在一起比较,那么太阳系将比比邻星小得多。

总之,太阳系虽然在宇宙中并不算特别大,但对于我们这个小小的星球来说,它仍具有惊人的规模和复杂性。

七、参考链接

✅【ChatGPT and Whisper APIs】文章链接:https://openai.com/blog/introducing-chatgpt-and-whisper-apis

✅【chat模型】说明演示文档:https://platform.openai.com/docs/api-reference/chat

✅【GPT-3.5介绍】:https://platform.openai.com/docs/models/gpt-3-5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/188795.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ctfshow刷题web入门--1--ljcsd

文章目录 ctf.show。信息搜集web1web2web3web4web5web6web7web8web9web10web11web12web13web14web15web16web17web18web19web20。爆破。知识1.1 播种随机数生成器-mt_srand。参考web21--重点web22--做不出来web23web24web25web26web27web28。。。命令执行。知识1 绕过正则表达式…

SQL sever2008中的游标

目录 一、游标概述 二、游标的实现 三、优缺点 3.1优点: 3.2缺点: 四、游标类型 4.1静态游标 4.2动态游标 4.3只进游标 4.4键集驱动游标 4.5显示游标: 4.6隐式游标 五、游标基本操作 5.1声明游标 5.1.1.IS0标准语法 5.1.1.1语…

在 Go 中使用 Protocol Buffers

各位准备好了吗!这一次,我们将深入探讨 Protocol Buffers(protobuf)及其在数据序列化中的超能力所在。 介绍 Protocol Buffers,也被称为 protobuf,是由谷歌开发的一种语言无关的二进制序列化格式。其主要…

1.前端--基本概念【2023.11.25】

1.网站与网页 网站是网页集合。 网页是网站中的一“页”,通常是 HTML 格式的文件,它要通过浏览器来阅读。 2.Web的构成 主要包括结构(Structure) 、表现(Presentation)和行为(Behavior&#xff…

cmake install接口常用方式介绍

cmake install接口常用方式介绍 1 Synopsis2 Introduction2.1 DESTINATION <dir>2.2 PERMISSIONS <permission>...2.3 CONFIGURATIONS <config>...2.4 COMPONENT <component>2.5 EXCLUDE_FROM_ALL2.6 RENAME <name>2.7 OPTIONAL 3 Signatures4 E…

Three.js 3D模型爆炸分解

你是否曾想展示一些很酷的发动机的 3D 模型? 这是一种可行的方法,使用一些非常基本的数学:一个简单的分解视图。 为此,我们将使用 React-Three-Fiber,但它可以与原生 Three.js 配合使用(它与 r3f 生态系统没有深度绑定,只是对我来说迭代速度更快)。 1、准备3D模型 首…

从0到0.01入门 Webpack| 005.精选 Webpack面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

nodejs微信小程序+python+PHP-健身俱乐部在线管理平台的设计与实现-安卓-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性&#xff1a;…

2.Linux系统及常用命令

目录 一、Linux文件系统和目录 1.1 Linux文件系统 1.2Linux主要目录 二、Linux远程连接 2.1前置条件 2.2 具体远程操作 三、Linux的常用命令 3.1 Linux命令的格式 3.2 Linux命令的帮助信息查看 3.3 Linux文件操作常用命令 命令中快捷键 以管理员权限执行命令 3.3.1…

java协同过滤算法 springboot+vue游戏推荐系统

随着人们生活质量的不断提高以及个人电脑和网络的普及&#xff0c;人们的业余生活质量要求也在不断提高&#xff0c;选择一款好玩&#xff0c;精美&#xff0c;画面和音质&#xff0c;品质优良的休闲游戏已经成为一种流行的休闲方式。可以说在人们的日常生活中&#xff0c;除了…

IDEA中的Postman?完全免费!

Postman是大家最常用的API调试工具&#xff0c;那么有没有一种方法可以不用手动写入接口到Postman&#xff0c;即可进行接口调试操作&#xff1f;今天给大家推荐一款IDEA插件&#xff1a;Apipost Helper&#xff0c;写完代码就可以调试接口并一键生成接口文档&#xff01;而且还…

微机原理_4

一、单项选择题&#xff08;本大题共 15 小题&#xff0c;每小题 3 分&#xff0c;共 45 分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案&#xff0c;请将选定的答案填涂在答题纸的相应位置上。) 1在产品研制的过程中,通常采用( )类型的存储芯片来存放待调试的…

GEE:众数滤波

作者:CSDN @ _养乐多_ 在本文中,我们将介绍如何使用Google Earth Engine(GEE)平台对遥感影像进行众数滤波处理。并以众数滤波平滑NDVI图像为示例,演示众数滤波整个过程。 结果如下图所示, 文章目录 一、众数滤波二、完整代码三、代码链接一、众数滤波 众数滤波是一种图…

运维高级-day01

shell回顾 1、快速生成版权控制信息&#xff0c;具体的内容自己替换 [root scripts]# cat ~/.vimrc autocmd BufNewFile *.py,*.cc,*.sh,*.java exec ":call SetTitle()" func SetTitle() if expand("%:e") sh call setline(1,"#!/bin/bash")…

分布式定时任务系列6:XXL-job触发日志过大引发的CPU告警

传送门 分布式定时任务系列1&#xff1a;XXL-job安装 分布式定时任务系列2&#xff1a;XXL-job使用 分布式定时任务系列3&#xff1a;任务执行引擎设计 分布式定时任务系列4&#xff1a;任务执行引擎设计续 分布式定时任务系列5&#xff1a;XXL-job中blockingQueue的应用 …

js无法请求后端接口,别的都可以?

在每个接口的控制器中加入以下代码即可&#xff1a; header(Access-Control-Allow-Methods:*); header("Access-Control-Allow-Origin:*"); 如果嫌麻烦可以添加在api初始函数里面

独乐乐不如众乐乐(二)-某汽车零部件厂商IC EMC企业规范

前言&#xff1a;该汽车零部件厂商关于IC EMC的规范可能是小编看过的企业标准里要求最明确的一份企业标准了&#xff0c;充分说明了标准方法不是死的&#xff0c;可以灵活应用。 先看看这份规范的抬头&#xff1a; 与其他企业规范一样&#xff0c;该汽车零部件厂商的IC EMC规范…

OSG粒子系统与阴影-自定义粒子系统示例<2>(5)

自定义粒子系统示例(二) 目前自定义粒子的方法有很多&#xff0c;在OSG 中使用的是 Billboard 技术与色彩融合技术。色彩融合是一种高级的渲染技术&#xff0c;如果读者有兴趣&#xff0c;可参看 OSG 粒子系统实现的源代码。这里采用简单的布告牌技术(osg::Billboard)与动画来实…

Canvas艺术之旅:探索锚点抠图的无限可能

说在前面 在日常的图片处理中&#xff0c;我们经常会遇到需要抠图的情况&#xff0c;无论是为了美化照片、制作海报&#xff0c;还是进行图片合成。抠图对于我们来说也是一种很常用的功能了&#xff0c;今天就让我们一起来看下怎么使用canvas来实现一个锚点抠图功能。 效果展示…