动手学深度学习(四)---多层感知机

文章目录

  • 一、理论知识
    • 1.感知机
    • 2.XOR问题
    • 3.多层感知机
    • 4.多层感知机的从零开始实现
  • 【相关总结】
    • 1.torch.randn()
    • 2.torch.zeros_like()

一、理论知识

1.感知机

给定输入x,权重w,和偏移b,感知机输出:
在这里插入图片描述
在这里插入图片描述

2.XOR问题

感知机不能拟合XOR问题,他只能产生线性分割面
在这里插入图片描述

3.多层感知机

多层感知机和softmax没有本质区别,只是多加了一层隐藏层 没有隐藏层就是softmax回归,加上隐藏层就是多层感知机

4.多层感知机的从零开始实现

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

2.实现一个具有单隐藏层的多层感知机,他包含256个隐藏单元

num_inputs, num_outputs, num_hiddens = 784, 10, 256
# 28 * 28

# 声明是torch的Parameter
W1 = nn.Parameter(
#     生成随机数字的tensor
    torch.randn(num_inputs, num_hiddens, requires_grad=True))
b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad = True))
W2 = nn.Parameter(
    torch.randn(num_hiddens, num_outputs, requires_grad=T rue))
b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True))

params = [W1, b1, W2, b2]

【相关总结】

1.torch.randn()

生成随机数字的tensor
这些随机数字满足标准正态分布
torch.randn(size) size可以为一个数字或者一个元组

import torch
x = torch.randn(3)
y = torch.randn(2,3)
print(x)
print(y)

tensor([-0.1201, -1.0340, 0.7885])
tensor([[-0.5694, 0.0461, 1.0315],
[-1.0342, -0.9757, -0.1844]])

2.torch.zeros_like()

torch.zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False)
返回一个与给定输入张量形状和数据类型相同,但所有元素都被设置为零的新张量。

import torch

x = torch.tensor([[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9]])
y = torch.zeros_like(x)
print(y)

tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/188523.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2023年最新IntelliJ IDEA下载安装以及Java环境搭建教程(含Java入门教程)

文章目录 写在前面Java简介IntelliJ IDEA简介IntelliJ IDEA下载安装JDK简介JDK下载教程 Java入门IntelliJ IDEA使用教程 写在后面 写在前面 2023年最新IntelliJ IDEA下载安装教程,内含JAVA环境搭建教程,一起来看看吧! Java简介 Java是一门…

MySQL的基础知识

目录 关系型数据库 SQL通用语法 数据类型 数值类型 字符串类型 日期类型 SQL分类 DDL 数据库操作 表操作 DML 添加数据 修改数据 删除数据 DQL 基本查询 条件查询 聚合函数 分组查询 排序查询 分页查询 执行顺序 DCL 管理用户 权限控制 函数 字符串…

模型优化【2】-剪枝[局部剪枝]

模型剪枝是一种常见的模型压缩技术,它可以通过去除模型中不必要的参数和结构来减小模型的大小和计算量,从而提高模型的效率和速度。在 PyTorch 中,我们可以使用一些库和工具来实现模型剪枝。 pytorch实现剪枝的思路是生成一个掩码&#xff0…

如何学习VBA:3.2.8 OnTime方法与OnKey方法

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的劳动效率,而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册,现在已经全部完成,希望大家利用、学习。 如果…

基于51单片机的人体追踪可控的电风扇系统

**单片机设计介绍, 基于51单片机超声波测距汽车避障系统 文章目录 一 概要概述硬件组成工作原理优势应用场景总结 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 # 基于51单片机的人体追踪可控的电风扇系统介绍 概述 该系统是基于51…

Flink实战(11)-Exactly-Once语义之两阶段提交

0 大纲 [Apache Flink]2017年12月发布的1.4.0版本开始,为流计算引入里程碑特性:TwoPhaseCommitSinkFunction。它提取了两阶段提交协议的通用逻辑,使得通过Flink来构建端到端的Exactly-Once程序成为可能。同时支持: 数据源&#…

ElasticSearch查询语法及深度分页问题

一、ES高级查询Query DSL ES中提供了一种强大的检索数据方式,这种检索方式称之为Query DSL(Domain Specified Language 领域专用语言) , Query DSL是利用Rest API传递JSON格式的请求体(RequestBody)数据与ES进行交互,这种方式的丰富查询语法…

html实现我的故乡,城市介绍网站(附源码)

文章目录 1. 我生活的城市北京(网站)1.1 首页1.2 关于北京1.3 北京文化1.4 加入北京1.5 北京景点1.6 北京美食1.7 联系我们 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者:xcLeigh 文章地址:https://blog.csdn.net/weixin_43…

【Linux】匿名管道与命名管道,进程池的简易实现

文章目录 前言一、匿名管道1.管道原理2.管道的四种情况3.管道的特点 二、命名管道1. 特点2.创建命名管道1.在命令行上2.在程序中 3.一个程序执行打开管道并不会真正打卡 三、进程池简易实现1.makefile2.Task.hpp3.ProcessPool.cpp 前言 一、匿名管道 #include <unistd.h&g…

链表?细!详细知识点总结!

链表 定义&#xff1a;链表是一种递归的数据结构&#xff0c;它或者为空&#xff08;null)&#xff0c;或者是指向一个结点&#xff08;node&#xff09;的引用&#xff0c;该结点含有一个泛型的元素和一个指向另一条链表的引用。 ​ 其实链表就是有序的列表&#xff0c;它在内…

批量按顺序1、2、3...重命名所有文件夹里的文件

最新&#xff1a; 最快方法&#xff1a;先用这个教程http://文件重命名1,2......nhttps://jingyan.baidu.com/article/495ba841281b7079b20ede2c.html再用这个教程去空格&#xff1a;利用批处理去掉文件名中的空格-百度经验 (baidu.com) 以下为原回答 注意文件名有空格会失败…

Javaweb之Vue组件库Element的详细解析

4 Vue组件库Element 4.1 Element介绍 不知道同学们还否记得我们之前讲解的前端开发模式MVVM&#xff0c;我们之前学习的vue是侧重于VM开发的&#xff0c;主要用于数据绑定到视图的&#xff0c;那么接下来我们学习的ElementUI就是一款侧重于V开发的前端框架&#xff0c;主要用…

深信服实验学习笔记——nmap常用命令

文章目录 1. 主机存活探测2. 常见端口扫描、服务版本探测、服务器版本识别3. 全端口&#xff08;TCP/UDP&#xff09;扫描4. 最详细的端口扫描5. 三种TCP扫描方式 1. 主机存活探测 nmap -sP <靶机IP>-sP代表 2. 常见端口扫描、服务版本探测、服务器版本识别 推荐加上-v参…

C++初阶(十二)string的模拟实现

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、string类的模拟实现1、构造、拷贝构造、赋值运算符重载以及析构函数2、迭代器类3、增删查…

Nacos安装使用

Nacos安装使用 官方下载地址: https://github.com/alibaba/nacos/releases 官方文档地址: https://nacos.io/zh-cn/docs/quick-start.html Nacos介绍 Nacos是阿里巴巴开源的一款支持服务注册与发现&#xff0c;配置管理以及微服务管理的组件。用来取代以前常用的注册中心&a…

史上最全前端知识点+高频面试题合集,十二大专题,命中率高达95%

前言&#xff1a; 下面分享一些关于阿里&#xff0c;美团&#xff0c;深信服等公司的面经&#xff0c;供大家参考一下。大家也可以去收集一些其他的面试题&#xff0c;可以通过面试题来看看自己有哪里不足。也可以了解自己想去的公司会问什么问题&#xff0c;进行有针对的复习。…

基于springboot网上超市管理系统

基于springboot网上超市管理系统 摘要 随着互联网的快速发展&#xff0c;电子商务行业迎来了蓬勃的发展&#xff0c;网上超市作为电子商务的一种形式&#xff0c;为消费者提供了便利的购物体验。本文基于Spring Boot框架&#xff0c;设计和实现了一个网上超市管理系统&#xff…

项目中如何配置数据可视化展现

在现今数据驱动的时代&#xff0c;可视化已逐渐成为数据分析的主要途径&#xff0c;可视化大屏的广泛使用便应运而生。很多公司及政务机构&#xff0c;常利用大屏的手段展现其实力或演示业务&#xff0c;可视化的效果能让观者更快速的理解结果并直观的看到数据展现。因此&#…

【Web】NewStarCtf Week2 个人复现

目录 ①游戏高手 ②include 0。0 ③ez_sql ④Unserialize&#xff1f; ⑤Upload again! ⑥ R!!C!!E!! ①游戏高手 经典前端js小游戏 检索与分数相关的变量 控制台直接修改分数拿到flag ②include 0。0 禁了base64和rot13 尝试过包含/var/log/apache/access.log,ph…

图论|知识图谱——详解自下而上构建知识图谱全过程

导读&#xff1a;知识图谱的构建技术主要有自顶向下和自底向上两种。其中自顶向下构建是指借助百科类网站等结构化数据源&#xff0c;从高质量数据中提取本体和模式信息&#xff0c;加入到知识库里。而自底向上构建&#xff0c;则是借助一定的技术手段&#xff0c;从公开采集的…