移动机器人路径规划(七)--- 基于MDP的路径规划MDP-Based Planning

目录

1 什么是MDP-Based Planning

2  worst-case analysis for nondeterministic model

3 Expected Cost Planning

4  Real Time Dynamic Programming(RTDP)


1 什么是MDP-Based Planning

        之前我们从起点到终点存在很多可执行路径,我们可以通过执行的时候根据环境的变化去选择最优的路径。

        到目前为止,我们假设机器人是在理想情况下进行的planning(机器人的执行是完美的、机器人的估计是完美的)。

        用上面两幅图说,我们规划一个地点到另一个地点的路线,我们假设让机器人走一个格子它就走一个格子。右图的话我们假设精准的反映环境的情况,估计好位姿以后,假设机器人精准的到了终点的位姿不存在意外情况。

        实际并非如此:

        当在实际应用中,执行和状态估计都不是完美的。

         • 执行不确定性:打滑、崎岖地形、风、空气阻力、控制误差等。

         • 状态估计不确定性:传感器噪声、校准误差、不完美估计、部分可观测性等。

        不确定性可以从机器人的视角分为两类,这表明机器人可以利用多少信息。

        不确定性模型

        • 非确定性:机器人不知道会有什么类型的不确定性或干扰被添加到其行为(下一步动作)中。(偏移目标点非常远受自然环境影响)

         • 概率性:机器人通过观察和收集统计数据对不确定性有一定估计。(运行一部分后直到自己受干扰程度)

        为了正式描述这个概念,我们首先引入两个决策者来模拟不确定性的产生,然后是带有不确定性的规划类型。

        决策者(游戏参与者):

         • 机器人是主要的决策者,根据完全已知的状态和完美执行进行规划。

         • 自然界向机器人制定的计划添加不确定性,这对机器人来说是不可预测的。

        Formalization-7.1:与自然界的博弈(独立博弈)
• 非空集合 U 称为机器人行动空间(robot action space)。每个 u ∈ U 被称为机器人行动。
• 非空集合 Θ 称为自然界行动空间(nature action space)。每个 θ ∈ Θ 被称为自然界行动。
• 函数 L:U × Θ → R ∪ {∞},称为成本函数(cost function)或负奖励函数。

        Formalization-7.2:自然界了解机器人行动(依赖博弈)
        • 非空集合 U 称为机器人行动空间。每个 u ∈ U 被称为机器人行动。
        • 对于每个 u ∈ U,有一个非空集合 Θ(u) 称为自然界行动空间。
        • 函数 L:U × Θ → R ∪ {∞},称为成本函数或负奖励函数。
        在机器人与自然界进行博弈时,对机器人来说什么是最佳决策?

        一步最坏情况分析(One-step Worst-Case Analysis)
        • 在非确定性(Nondeterministic)模型下,独立博弈中的 P(θ) 和依赖博弈中的 P(θ|u_k) 是未知的;
        • 机器人无法预测自然界的行为,并假设它恶意地选择会使成本尽可能高的行动;
        • 因此,假设最坏情况下做出决策是合理的。

        我们穷举所有的nature action space,从中筛选出最不利的这种情况让机器人执行这个动作将最不利降到最低。

        • 在概率模型下,独立博弈中的 P(θ) 和依赖博弈中的 P(θ|u_k) 是已知的;
        • 假设已经观察到了应用的自然界行动,并且自然界在选择行动时采用了随机化策略。
        • 因此,我们优化获得平均成本(average cost to be received)。

        机器人每执行一个动作,环境会对齐施加各种影响,我们去求一下各种影响的期望选择让期望值最小的一个动作。

        多步的情况下呢?

        Formalization-7.2:带有自然界的离散规划
1. 具有初始状态 x_s 和目标集合 X_F ⊂ X 的非空状态空间 X。
2. 对于每个状态 x ∈ X,有一个有限且非空的机器人行动空间 U(x)。对于每个 x ∈ X 和 u ∈ U(x),有一个有限且非空的自然界行动空间 Θ(x, u)。

 3.状态转移函数 f (x, u, θ) 对于每个 x ∈ X, u ∈ U,和 θ ∈ Θ(x, u):

4.一组阶段(机器人不由但一阶段表示),每个阶段用 k 表示,从 k = 1 开始并无限持续,或者在最大阶段 k = K + 1 = F 结束。

5.一个阶段叠加的成本函数 L。让 x̃ F,ũ k,θ̃ K 表示截止到第 K 阶段的状态历史、机器人行动和自然界行动:

        马尔可夫决策过程(MDP)
        在学习领域,MDP 是一个 4 元组 (S, A, P, R),在规划领域则是 (X, U, P, L):
        • S 或 X 是状态空间,
        • A 或 U 是(机器人)动作空间,
        • P(x_k+1 |x_k, u_k) 是概率模型下的状态转移函数,在非确定性模型下退化为一个集合 X_k+1 (x_k, u_k),
        • R(x_k, x_k+1) 是即时奖励,或者是由于 u、θ 从 x_k 过渡到 x_k+1 的负一步成本 −l(x_k, u_k, θ_k)。
        面对不确定性进行规划的第一个难题在于用 MDP 模型适当地形式化我们的问题。

        机器人从x_I移动到x_G,状态空间就是布满黑点的区域。动作空间就是五种(停留在原地、上下左右)。

        nature的动作空间:

        1.我们假定机器人在x_k这个位置执行了u_k动作含一个随机的高斯误差。(连续)

        2.对nature的动作空间进行离散化的定义,机器人在x_k这个位置执行了u_k动作加上一个额外的动作。(离散)

        代价函数l:下一个状态与当前状态的距离差。

        我们希望找一个路径(以最小的代价移动到目标位置)。

        \pi是状态空间到动作空间的一个映射,它规定了在什么状态下我应该执行一个什么样的动作,是一个离散集合的形式。

        定义衡量policy好坏的变量:

33

2  worst-case analysis for nondeterministic model

        我们拿一个具体的例子:

        第K+1步最优的cost to go已经知道了,我们现在在当前状态x_k机器人执行了特征的动作u_k,机器人能从这个x_k转移到具体的哪个x_{k+1}是由\theta _k决定的。我们找一个\theta _k使得单步的cost加上K+1的cost to go和最大的\theta _k,我们再去选择cost最小的u_k

        我们假设终点处的cost to go是0,其他地方未知。S3来说,cost to go为0+1。s1来说,只有一个u,但是有两个\theta,一个是单步2 + 终点0,另一个分支的话 2 + s2的cost to go(还未计算)。

        从终点到起点迭代求解。

        举一个例子:

        首先我们将G(x_F) \leftarrow 0,其他的设置为无穷,将openlist初始化为S_g

        下一次待扩展状态为S_g。下一步找其前继节点。

        对于s_3,计算G(x_k = s_3) = 1 + G(x_{k+1} = s_g),openlist添加s_3

        对于s_1G^{*}_{k}(x_k=s_1) = min \{max \{2+0,2+inf \} \}(inf.....不能更新,无法放入openlist),G^{*}_{k}(x_k=s_3) = min\{ 1+0 \}

        对于s4,相同的。

        对于s2,也是相同的。不过它有两个前继节点S_s,s_1。先对S1进行处理:

        最后更新Ss:

        优点、缺点:

 

3 Expected Cost Planning

        那么问题来了?

        我们来看算法描述:

        举个例子把:

        首先我们把G \ value初始化为0。选择一个迭代顺序s_1 -> s_2 ->s_3->s_4->s_5。       

        先来看s_1的更新:

        在来看s_2的更新:

        在来看s_3的更新:

        在来看s_4的更新:

        最后对s_s的更新:

        经过一轮之后我们有了G。我们接着进行第二轮迭代:

        。。。。第三次迭代

        如何判断收敛?边界条件??如何改进??迭代次序怎么来改进??

        优点&缺点:

        1.反映的是平均的水平

        2.不一定是最优

4  Real Time Dynamic Programming(RTDP)

        看看实际例子吧:

        根据每个节点到s_g的数量进行更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/188072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

物联网后端个人第十二周总结

学习工作进度 物联网方面 1.模拟设备通过规则引擎将数据通过mqtt进行转发 在物联网平台上实现模拟设备通过规则引擎将数据通过mqtt进行转发已经全部完成了,所使用的物联网平台在这方面有不少的问题和bug,也可能是没有按照开发者的想法对平台进行使用才导…

基于微信小程序的员工宿舍报修系统

项目介绍 随着信息技术和网络技术的飞速发展,人类已进入全新信息化时代,传统管理技术已无法高效,便捷地管理信息。为了迎合时代需求,优化管理效率,各种各样的管理系统应运而生,各行各业相继进入信息管理时…

Leetcode—83.删除排序链表中的重复元素【简单】

2023每日刷题(四十) Leetcode—83.删除排序链表中的重复元素 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* deleteDuplicates(struct ListNode* head) {i…

张弛声音变现课,枪战电影高能量、快速节奏

在执行枪战片的声音配音任务时,配音员应该致力于传递出戏剧性的紧张氛围与动作场面的激烈感。枪战场景往往是高能量、快速节奏的,这就要求配音不仅要与视觉动作紧密结合,还要通过声音来增强动作的逼真度和观众的紧迫感。以下是针对枪战电影进…

Linux(CentOS7)上安装mysql

在CentOS中默认安装有MariaDB(MySQL的一个分支),可先移除/卸载MariaDB。 yum remove mariadb // 查看是否存在mariadb rpm -qa|grep -i mariadb // 卸载 mariadb rpm -e --nodeps rpm -qa|grep mariadb yum安装 下载rpm // 5.6版本 wge…

日本运营商启动先进边缘云技术研发

摘要:日本运营商乐天移动最近启动了为 5G 之后的下一个通信标准开发边缘平台功能的研发工作。 乐天移动(Rakuten Mobile)表示,其面向下一代通信的先进边缘云技术研发(R&D)项目已被日本国家信息通信技术…

抖音权重查询源码H5源码

源码下载:123网盘

leetCode 1026. 节点与其祖先之间的最大差值 + 递归

1026. 节点与其祖先之间的最大差值 - 力扣(LeetCode) 给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值 V,其中 V |A.val - B.val|,且 A 是 B 的祖先。(如果 A 的任何子节点之一为 B&am…

[架构之路-251]:目标系统 - 设计方法 - 软件工程 - 软件建模 - 什么是建模,什么是软件系统建模?软件系统阶段性建模?正向建模与反向建模?

目录 前言: 一、什么是建模 1.1 什么是建模 1.2 常见的建模的方式与种类 二、什么是软件系统建模 2.1 软件系统建模的概念 2.2 软件系统常见的三种建模方法和手段 2.3 软件系统建模的常见工具 三、软件系统阶段性建模 3.1 软件工程在不同阶段对软件系统进…

竞赛选题 题目:基于python的验证码识别 - 机器视觉 验证码识别

文章目录 0 前言1 项目简介2 验证码识别步骤2.1 灰度处理&二值化2.2 去除边框2.3 图像降噪2.4 字符切割2.5 识别 3 基于tensorflow的验证码识别3.1 数据集3.2 基于tf的神经网络训练代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于pyt…

2022年12月 Scratch(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 默认小猫角色和气球角色都是显示状态,小猫程序如下图所示,气球没有程序,点击绿旗,舞台上最终显示的效果是?( ) A:可能出现6个不同位置的小猫和6个小球 B:可能出现6个不同位…

RabbitMq使用与整合

MQ基本概念 MQ概述 MQ全称 Message Queue([kjuː])(消息队列),是在消息的传输过程中保存消息的容器。多用于分布式系统之间进行通信。 (队列是一种容器,用于存放数据的都是容器,存…

Leetcode—45.跳跃游戏II【中等】

2023每日刷题&#xff08;四十&#xff09; Leetcode—45.跳跃游戏II 贪心法思想 实现代码 #define MAX(a, b) (a > b ? (a) : (b))int jump(int* nums, int numsSize) {int start 0;int end 1;int ans 0;int maxStride 0;while(end < numsSize) {maxStride 0;fo…

2016年12月13日 Go生态洞察:2016年Go用户调查与企业问卷

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

以“防方视角”观文件上传功能

为方便您的阅读&#xff0c;可点击下方蓝色字体&#xff0c;进行跳转↓↓↓ 01 案例概述02 攻击路径03 防方思路 01 案例概述 这篇文章来自微信公众号“NearSec”&#xff0c;记录的某师傅接到一个hw项目&#xff0c;在充分授权的情况下&#xff0c;针对客户的系统进行渗透测试…

Java 简单解决 返回日期格式带 ‘T‘ 问题

问题描述 接口返回数据给前端时&#xff0c;返回的日期带 ‘T’ 解决方案&#xff1a; 在返回的实体类字段中&#xff0c;使用JsonFormat(pattern "yyyy-MM-dd",timezone"GMT8")格式化日期

springboot2.0 集成swagger3+Knife4j导出离线API 配置

springboot 版本2.3.1 一、集成swagger3 引入swagger依赖包 <!--swagger3集成--><dependency><groupId>org.springframework.plugin</groupId><artifactId>spring-plugin-core</artifactId><version>2.0.0.RELEASE</version>…

BGP联邦及路由反射器配置

需求 1 AS1存在两个环回&#xff0c;一个地址为192.168.1.0/24&#xff0c;该地址不能再任何协议中宣告 AS3存在两个环回&#xff0c;一个地址为192.168.2.0/24&#xff0c;该地址不能再任何协议中宣告 AS1还有一个环回地址为10.1.1.0/24&#xff0c;AS3另一个环回地址是11.1.1…

微服务 BFF 架构设计

文章目录 一、什么是 BFF二、典型的进程间微服务架构薄 BFF厚 BFF微服务模式对比 三、BFF 的问题四、BFF 的治理方向五、总结 在现代软件开发中&#xff0c;由于程序、团队、数据规模太大&#xff0c;需要把企业的业务能力进行复用&#xff0c;将领域服务剥离&#xff0c;提供通…

[PyTorch][chapter 66][强化学习-值函数近似]

前言 现实强化学习任务面临的状态空间往往是连续的,无穷多个。 这里主要针对这种连续的状态空间处理。后面DQN 也是这种处理思路。 目录&#xff1a; 1&#xff1a; 原理 2&#xff1a; 梯度更新 3&#xff1a; target 和 预测值 4 流程 一 原理 强化学习最重要的是得到 …