2023 年 认证杯 小美赛 ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。
cs数模团队在认证杯 小美赛前为大家提供了许多资料的内容呀!都是精品呢!!
具体可以在*底部名片中了解~
在这里插入图片描述

以五一杯 A题为例子,以下是咱们做的一些想法呀!

问题1:

(1)建立数学模型:

无人机投放模型在这个问题中的作用是建立数学模型来描述无人机投放爆炸物的过程,并且可以通过该模型来优化无人机投放的策略,从而提高命中率和效率。具体来说,该模型可以通过考虑无人机的飞行高度、飞行速度、俯冲角度、发射速度等因素来确定最佳的发射距离和发射时机,以确保物体能够准确地命中目标。此外,该模型还可以考虑外部因素,如风速和风向等,来调整无人机的飞行轨迹和姿态,以提高投放精度和稳定性。

对于本题的模型,有:

其中 ρ 为空气密度,S 为物资横截面积, 为物资的阻力系数, g 为重力加速度,F 为无人机与物资之间的牵引力。

当无人机投放物资时,物资与无人机之间断开连接,牵引力 F取0,上式可以化简为:

其中为重力加速度。

(2)在无人机的飞行高度为 300m,飞行速度为 300km/h,风速为 5m/s,风向与水平面平行的情况下,使用代码解决:

import

 math
 
# 定义常量
v0 = 300      # 飞行速度,单位km/h
vw = 5        # 风速,单位m/s
h = 300       # 飞行高度,单位m
r = 0.2       # 球形物资半径,单位m
m = 50        # 球形物资质量,单位kg
g = 9.8       # 重力加速度,单位m/s^2
 
# 计算投放距离
d0 = v0**2/g * math.sin(0*2*math.pi/360) + vw*v0/g * math.cos(0*2*math.pi/360)
d180 = v0**2/g * math.sin(180*2*math.pi/360) + vw*v0/g * math.cos(180*2*math.pi/360)
d90 = v0**2/g * math.sin(90*2*math.pi/360) + vw*v0/g * math.cos(90*2*math.pi/360)
 
# 输出结果
print(f"无人机飞行方向与风向相同时,投放距离为:{d0:.1f}m")
print(f"无人机飞行方向与风向相反时,投放距离为:{d180:.1f}m")

问题2:
假设无人机在水平飞行过程中到达距离目标点的水平距离为 x ,飞行高度为 ℎ ,飞行速度为v ,俯冲角度为 α ,发射速度为 u 。则无人机发射炸弹的轨迹可以分解为水平方向和竖直方向两个分量。

在水平方向上,无人机在 秒到达目标点,发射炸弹的时间为 秒。发射炸弹时无人机的水平速度为vcos⁡α ,炸弹的水平初速度为 ucos⁡α。

在竖直方向上,炸弹自由落体运动,竖直初速度为 usin⁡α ,竖直加速度为g 。设炸弹飞行的时间为 秒,则有:

将 t3 的值代入到水平方向上的运动中,则可以求得无人机与目标点之间的距离 x1 :

假设无人机发射炸弹的距离为 d ,则需要满足 1000≤d≤3000 。为了使无人机在发射炸弹时仍能保持安全的飞行高度,假设无人机的飞行高度为 800m ,则有 ℎ≥300m 。

为了使发射策略可行,需要选择合适的俯冲角度 α 和发射速度u。假设 α 为定值,可以根据上述模型求出发射速度u与发射距离d的关系,并绘制出其图像,如下图所示。

由图像可知,当俯冲角度为 30∘ 时,发射速度最小,约为 426.8m/s ,此时发射距离为d≈1716.2m

问题3:
无人机的飞行稳定性可以用无人机的俯仰角和偏航角的变化率来描述,即:

其中, θ表示俯仰角, 表示偏航角。这个数值越小,说明无人机的飞行越稳定。

无人机的命中精度可以用命中目标的距离来描述,与无人机的飞行稳定性呈反比关系,即:

在实际应用中,可以通过无人机的传感器数据来计算无人机的俯仰角和偏航角的变化率,并根据上述公式来评估无人机的飞行稳定性和命中精度。

import numpy as np
import matplotlib.pyplot as plt


def dynamic_equation(x, u):
    # 状态方程
    A = np.array([[1, 0, 0, dt, 0, 0],
                  [0, 1, 0, 0, dt, 0],
                  [0, 0, 1, 0, 0, dt],
                  [0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0, 0],
                  [0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt, 0],
                  [0, 0, 0, 0, 0, 1-0.5*rho*Cd*S/m*dt]])

    # 输入方程
    B = np.array([[0, 0, 0, 0],
                  [0, 0, 0, 0],
                  [0, 0, 0, 0],
                  [0, 0, 0, -0.5*rho*S*vx0**2/m*dt],
                  [0, 0, 0, -0.5*rho*S*vx0**2/m*dt],
                  [0, 0, 0, -0.5*rho*S*vx0**2/m*dt]])

    # 状态更新
    x_new = np.dot(A, x) + np.dot(B, u)

    return x_new

# 定义无人机飞行过程的仿真函数
def simulate_flight(x0, u, t):
    # 初始化状态和控制输入
    x = x0
    u = u.reshape(-1, 1)

    # 初始化状态列表和控制输入列表
    x_list = [x]
    u_list = [u]

    # 循环仿真
    for i in range(len(t)):
        # 计算下一个状态
        x = dynamic_equation(x, u)

        # 记录状态和控制输入
        x_list.append(x)、、模糊处理 完整版看文章下面~
        u_list.append(u)

    # 将列表转换为数组
    x_array = np.array(x_list)
    u_array = np.array(u_list)

    return x_array, u_array

# 无人机和环境参数设置
h = 800  # 飞行高度,单位:m
v0 = 300  # 无人机飞行速度,单位:km/h
v = np.linspace(300, 400, 101) / 3.6  # 无人机相对地面速度,单位:m/s
vw = np.array([6, 0])  # 风速,单位:m/s
gamma = np.deg2rad(45)  # 俯冲角,单位:rad
g = 9.8  # 重力加速度,单位:m/s^2

# 计算无人机稳定性
S = 2 * np.pi * (0.5 ** 2)  # 球形爆炸物的参考面积
Cd = 0.5  # 球形爆炸物的阻力系数
m = 50  # 球形爆炸物的质量,单位:kg
rho = 1.2  # 空气密度,单位:kg/m^3
K = 0.5 * rho * S * Cd / m  # 阻力系数
u = np.sqrt(v ** 2 + (v0 * np.sin(gamma)) ** 2)  # 爆炸物相对空气速度
D = K * u ** 2  # 阻力大小
H = h - np.sqrt((h ** 2) / (np.tan(gamma) ** 2 + 1))  # 爆炸物发射高度
t = (H - 300) / (v0 * np.cos(gamma))  # 爆炸物发射时间
x0 = v0 * t  # 无人机前进距离
x = x0 + (v + vw[0]) * t  # 爆炸物水平位移距离
y = H - (v0 * np.sin(gamma) + (g + vw[1]) * t) * t / 2  # 爆炸物垂直位移距离
delta_x = 20 / 2  # 爆炸物命中误差,单位:cm
sigma = delta_x / 3  # 标准差
P = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - delta_x) ** 2 / (2 * sigma ** 2))  # 命中概率密度函数
hit_rate = np.trapz(P, x)  # 命中率

# 可视化结果
plt.plot(v, P)
plt.xlabel('Horizontal displacement (m)')
plt.ylabel('Probability density')
plt.title('Hit probability density')
plt.show()

print('The hit rate is %.2f%%.' % (hit_rate * 100))


cs数模团队在认证杯 小美赛前为大家提供了许多资料的内容呀!!
具体可以看看我的下方名片!里面包含有亚太赛一手资料与分析!
另外在赛中,我们也会陪大家一起解析认证杯的一些方向
关注 CS数模 团队,数模不迷路~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/187211.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GEE:通过将 Landsat 5、7、8、9 的 C02 数据集合并起来,构建 NDVI 长时间序列

作者:CSDN @ _养乐多_ 本文记录了在 Google Earth Engine(GEE)平台上,将 Landsat-5、Landsat-7、Landsat-8 和 Landsat-9 的数据合成为一个影像集合,并生成 NDVI(归一化植被指数)的时间序列的代码。 代码封装成了函数,方便调用,结果如下图所示, 在实际应用中,可能…

【Ambari】HDFS基于Ambari的常规运维

🦄 个人主页——🎐开着拖拉机回家_大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&#x1f…

如何找出excel中两列数据中不同的值(IF函数的用法)

第一部分,举例: 例1: 如下图所示,A列和B列是需要比较的数据,C列为对比规则:IF(A2B2,"是","否") 示例图 例2:给B列的成绩评等级 C列的规则: IF(B2>85,&qu…

jvm优化之:OOM(out of memory)内存溢出

内存溢出 注意内存溢出不是内存泄漏!!这里主要是介绍如何用jdk自带的jmap工具导出进程堆空间快照。内存溢出: Out Of Memory,是指申请的堆内存空间不够用了,比如:你申请了10M空间,但是你要放12M…

Maven项目下详细的SSM整合流程

文章目录 🎉SSM整合流程一、两个容器整合✨ 1、先准备好数据库config.properties连接、mybatis-config.xml🎊 2、容器一:优先配置spring.xml文件🎊 3、容器二:配置springMVC.xml文件🎊 4、Tomcat整合spring…

图论——二部图及其算法

什么是二部图 二部图的判定 例子1 任选一个节点染成红色 红色的邻居染成蓝色 蓝色邻居染成红色 例子2 这个不是二部图 无权二部图的最大匹配

【腾讯云云上实验室-向量数据库】用向量数据库——实现高效文本检索功能

文章目录 前言Tencent Cloud VectorDB 简介Tencent Cloud VectorDB 使用实战申请腾讯云向量数据库腾讯云向量数据库使用步骤腾讯云向量数据库实现文本检索 结论和建议 前言 想必各位开发者一定使用过关系型数据库MySQL去存储我们的项目的数据,也有部分人使用过非关…

Python 自动化用处太大了!|python自动整理文件,一键完成!

随着时代的发展及人工智能的到来,Python 自动化办公能力几乎已成为每个岗位的必备技能! 而且到处可见的抖音、朋友圈铺天盖地宣传 Python 可以轻松达到办公自动化,并且学习没门槛,是真的吗? 我很负责的告诉大家&#…

使用 Python 和 NLTK 进行文本摘要

一、说明 文本摘要是一种自然语言处理技术,允许用户将大量文本总结为小块,而不会丢失任何重要信息。本文介绍NLP中使用Gensim和Sumy实现文本摘要的步骤。 二、为什么要总结文本? 互联网包含大量信息,而且每秒都在增加。文本摘要可…

BART - 磁共振重建库 linux系统安装 MATLAB 使用

本文主要介绍如何在linux系统中安装伯克利大学的磁共振重建库BART 和在matlab中的配置使用。 安装必要的库 (linux 命令行) $ sudo apt-get install make gcc libfftw3-dev liblapacke-dev libpng-dev libopenblas-dev 下载编译BART 文件 (官网链接:BART Toolbox) 命令行下…

RPC和HTTP的区别

目录 1、RPC是什么 1.1 概念 1.2 RPC的组成部分 1.3 常见的 RPC 技术和框架 1.4 RPC的工作流程 2、HTTP是什么 2.1 概念 2.2 HTTP的消息格式 2.3 HTTP响应状态码有哪些 3、⭐RPC和HTTP的区别 小结 1、RPC是什么 1.1 概念 RPC(Remote Procedure Call&am…

『Postman入门万字长文』| 从工具简介、环境部署、脚本应用、Collections使用到接口自动化测试详细过程

『Postman入门万字长文』| 从工具简介、环境部署、脚本应用、Collections使用到接口自动化测试详细过程 1 Postman工具简介2 Postman安装3 Postman界面说明4 一个简单请求4.1 请求示例4.2 请求过程 5 Postman其他操作5.1 import5.2 History5.3 Environment5.4 Global5.5 其他变…

RK3399 板子烧录Armbian

本来不想写在CSDN这里的。帮有需要的同学了吧。 板子上面标记型号为: GC18-108-RK3399-V2.0TEAN E120339 94V-OML1没有HDMI接口(我也是汗,买的时候注意到,坑了),配置信息。 CPU : RK3399RAMROM: 4G16G无…

NX二次开发UF_CURVE_ask_combine_curves 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CURVE_ask_combine_curves Defined in: uf_curve.h int UF_CURVE_ask_combine_curves(tag_t combine_curve_feature, tag_t * first_curve_tag, UF_CURVE_combine_curves_directi…

前车之鉴: 适用于所有select选择框的 全选反选逻辑,如何只用单个change事件优雅完成

文章目录 实际效果1.1 效果展示1.2 核心功能 Show CodeQ & A彩蛋 实际效果 1.1 效果展示 1.2 核心功能 区别网上其他思路,我这里不需要使用原生点击事件,将全选反选逻辑收敛在一个change事件上 此前已经看过一些全选逻辑同学尝试过后,会…

武汉数字孪生赋能工业制造,加速推进制造业数字化转型

随着数字孪生技术的不断推进,互联网、物联网、智能传感技术开始应用到数控机床的远程服务,状态监控,故障诊断,维护管理等方面。武汉数字孪生是在虚拟空间中创建物理对象的高保真虚拟模型,以模拟其在现实世界中的行为提…

【网络】传输层 --- 详解TCP协议

目录 一、协议段格式及其策略确认应答(ACK)机制6个标志位超时重传流量控制滑动窗口1、先谈滑动窗口一般情况2、再谈特殊窗口 拥塞控制拥塞窗口 延迟应答&&捎带应答面向字节流粘包问题 二、三次握手和四次挥手三次握手为什么是3次?不是2、4、5、6次呢 四次挥…

2023.11.25-电商项目建设业务学习1-指标,业务流程,核销

目录 1.指标分类(原子指标,派生指标,衍生指标) 2.一些业务名词 3.四大业务流程-销售需求 3.1-线上线下销售 3.2线上线下退款 4.四大业务流程-会员业务 5.四大业务流程-供应链业务 6.四大业务流程-商城业务 7.核销主题需求分析 1.指标分类(原子指标,派生指标,衍生指标) 原…

C++类与对象(上)

🎉个人名片: 🐼作者简介:一名乐于分享在学习道路上收获的大二在校生🐻‍❄个人主页🎉:GOTXX🐼个人WeChat:ILXOXVJE🐼本文由GOTXX原创,首发CSDN&am…

Spark---SparkCore(一)

一、术语与宽窄依赖 1、术语解释 1、Master(standalone):资源管理的主节点(进程) 2、Cluster Manager:在集群上获取资源的外部服务(例如:standalone,Mesos,Yarn) 3、Worker Node(standalone):资源管理的从节点(进程)或者说管理本机资源的…