运动鞋品牌识别

一、前期工作


1. 设置GPU

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus


如果使用的是CPU可以忽略这步



2. 导入数据

data_dir = "./46-data/"

data_dir = pathlib.Path(data_dir)




3. 查看数据

 

image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)


 

图片总数为: 578
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

YAIRI

output_11_0.png



二、数据预处理

1. 加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
●tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。这个函数可以以更方便的方式加载图像数据,用于训练和评估神经网络模型。


测试集与验证集的关系:

1验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
2但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
3因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集

batch_size = 32
img_height = 224
img_width = 224



如果准备尝试 categorical_crossentropy损失函数,下面的代码遇到变动哈,变动细节将在下一周博客内公布。
 

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./46-data/train/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 502 files belonging to 2 classes.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./46-data/test/",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)
Found 76 files belonging to 2 classes.




我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
 

class_names = train_ds.class_names
print(class_names)
['adidas', 'nike']



2. 可视化数据

 

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

output_22_0.png



3. 再次检查数据

 

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break
(32, 224, 224, 3)
(32,)


●Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
●Label_batch是形状(32,)的张量,这些标签对应32张图片

4. 配置数据集

●shuffle() :打乱数据,关于此函数的详细介绍可以参考:数据集shuffle方法中buffer_size的理解 - 知乎
●prefetch() :预取数据,加速运行

prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。当加速器正在执行第 N 个训练步时,CPU 正在准备第 N+1 步的数据。这样做不仅可以最大限度地缩短训练的单步用时(而不是总用时),而且可以缩短提取和转换数据所需的时间。如果不使用prefetch(),CPU 和 GPU/TPU 在大部分时间都处于空闲状态:

image.png


使用prefetch()可显著减少空闲时间:

image.png


●cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)



三、构建CNN网络

卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入的形状是 (224, 224, 3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

网络结构图(可单击放大查看):

image.png

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
rescaling (Rescaling)        (None, 224, 224, 3)       0         
_________________________________________________________________
conv2d (Conv2D)              (None, 222, 222, 16)      448       
_________________________________________________________________
average_pooling2d (AveragePo (None, 111, 111, 16)      0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 109, 109, 32)      4640      
_________________________________________________________________
average_pooling2d_1 (Average (None, 54, 54, 32)        0         
_________________________________________________________________
dropout (Dropout)            (None, 54, 54, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 52, 52, 64)        18496     
_________________________________________________________________
dropout_1 (Dropout)          (None, 52, 52, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 173056)            0         
_________________________________________________________________
dense (Dense)                (None, 128)               22151296  
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 258       
=================================================================
Total params: 22,175,138
Trainable params: 22,175,138
Non-trainable params: 0
_________________________________________________________________




四、训练模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

●损失函数(loss):用于衡量模型在训练期间的准确率。
●优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
●指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

1.设置动态学习率

📮 ExponentialDecay函数:
tf.keras.optimizers.schedules.ExponentialDecay是 TensorFlow 中的一个学习率衰减策略,用于在训练神经网络时动态地降低学习率。学习率衰减是一种常用的技巧,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。

🔎 主要参数:
●initial_learning_rate(初始学习率):初始学习率大小。
●decay_steps(衰减步数):学习率衰减的步数。在经过 decay_steps 步后,学习率将按照指数函数衰减。例如,如果 decay_steps 设置为 10,则每10步衰减一次。
●decay_rate(衰减率):学习率的衰减率。它决定了学习率如何衰减。通常,取值在 0 到 1 之间。
●staircase(阶梯式衰减):一个布尔值,控制学习率的衰减方式。如果设置为 True,则学习率在每个 decay_steps 步之后直接减小,形成阶梯状下降。如果设置为 False,则学习率将连续衰减。

# 设置初始学习率
initial_learning_rate = 0.1

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, 
        decay_steps=10,      # 敲黑板!!!这里是指 steps,不是指epochs
        decay_rate=0.92,     # lr经过一次衰减就会变成 decay_rate*lr
        staircase=True)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])



注:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始前,学习率(learning_rate)都将会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:

learning_rate = initial_learning_rate * decay_rate ^ (step / decay_steps)

学习率大与学习率小的优缺点分析:

学习率大

● 优点:
○1、加快学习速率。
○2、有助于跳出局部最优值。
● 缺点:
○1、导致模型训练不收敛。
○2、单单使用大学习率容易导致模型不精确。

学习率小

● 优点:
○1、有助于模型收敛、模型细化。
○2、提高模型精度。
● 缺点:
○1、很难跳出局部最优值。
○2、收敛缓慢。

2.早停与保存最佳模型参数

EarlyStopping()参数说明:

●monitor: 被监测的数据。
●min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。
●patience: 没有进步的训练轮数,在这之后训练就会被停止。
●verbose: 详细信息模式。
●mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。
●baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。
●estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping

epochs = 50

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True,
                                save_weights_only=True)

# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=20, 
                             verbose=1)



3. 模型训练
 

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper])
Epoch 1/50
16/16 [==============================] - 4s 31ms/step - loss: 3.5439 - accuracy: 0.4721 - val_loss: 0.6931 - val_accuracy: 0.5789

Epoch 00001: val_accuracy improved from -inf to 0.57895, saving model to best_model.h5
Epoch 2/50
16/16 [==============================] - 0s 12ms/step - loss: 0.6929 - accuracy: 0.5279 - val_loss: 0.6891 - val_accuracy: 0.6447

......

Epoch 00040: val_accuracy did not improve from 0.89474
Epoch 41/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0931 - accuracy: 0.9841 - val_loss: 0.3837 - val_accuracy: 0.8816

Epoch 00041: val_accuracy did not improve from 0.89474
Epoch 42/50
16/16 [==============================] - 0s 12ms/step - loss: 0.0871 - accuracy: 0.9801 - val_loss: 0.3834 - val_accuracy: 0.8816

Epoch 00042: val_accuracy did not improve from 0.89474
Epoch 00042: early stopping



五、模型评估

1. Loss与Accuracy图
 

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

output_51_0.png


2. 指定图片进行预测
 

from PIL import Image
import numpy as np

# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./46-data/test/nike/1.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) #/255.0  # 记得做归一化处理(与训练集处理方式保持一致)

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

预测结果为: nike


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185514.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Spring Boot 源码学习】自定义 Banner 信息打印

Spring Boot 源码学习系列 自定义 Banner 信息打印 引言往期内容主要内容1. ResourceBanner 打印1.1 添加默认的 banner.txt 资源文件1.2 指定任意路径的资源文件1.3 添加自定义的信息 2. ImageBanner 打印2.1 添加默认的图像资源文件2.2 指定任意路径的图像资源文件2.3 添加自…

网站监控是什么

在当今高度互联的世界中,网站已成为企业和个人成功的关键因素。无论是提供产品或服务,还是建立品牌形象,网站都是不可或缺的工具。然而,随着互联网用户对访问速度和用户体验的高要求,保持网站的稳定性和可用性变得至关…

旋转的数组

分享今天看到的一个题目,不同思路解法 题目 思路1:时间复杂度0(N*k) void rotate(int *a,int N,int k)//N为数组元素个数 { while(k--) { int tema[N-1]; for(int rightN-2;right>0;right--) { a[right1]a[right]; } a[0]tem; …

Seata的部署和集成

文章目录 一、部署Seata的tc-server1.下载2.解压3.修改配置4.在nacos添加配置5.创建数据库表6.启动TC服务 二、微服务集成seata1.引入依赖2.修改配置文件 三、TC服务的高可用和异地容灾1.模拟异地容灾的TC集群2.将事务组映射配置到nacos3.微服务读取nacos配置 一、部署Seata的t…

静态web服务器开发之HTTP协议

文章目录 版权声明HTTP协议网址HTTPS补充:HTTP的无状态特性浏览器访问Web服务器流程HTTP协议请求报文HTTP GET请求报文分析POST请求方式要点总结 HTTP协议响应报文HTTP 响应报文分析HTTP 状态码要点总结 HTTP协议通信过程查看 版权声明 本博客的内容基于我个人学习…

矩阵论(Matrix)

​ 大纲 矩阵微积分:多元微积分的一种特殊表达,尤其是在矩阵空间上进行讨论的时候逆矩阵(inverse matrix)矩阵分解:特征分解(Eigendecomposition),又称谱分解(Spectral decomposition&#xf…

Spark SQL 时间格式处理

初始化Spark Sql package pbcp_2023.clear_dataimport org.apache.spark.SparkConf import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions.{current_date, current_timestamp}object twe_2 {def main(args: Array[String]): Unit {val con new …

优秀的时间追踪软件Timemator for Mac轻松管理时间!

在现代社会,时间管理成为了我们工作和生活中的一大挑战。如果你经常感到时间不够用,无法高效地完成任务,那么Timemator for Mac将成为你的得力助手。 Timemator for Mac是一款出色的时间追踪软件,它可以帮助你精确记录和管理你的…

Codeforces Round 786 (Div. 3) D. A-B-C Sort

D. A-B-C Sort 步骤 1 :当 a不为空时,从 a中取出最后一个元素,并将其移动到数组 b的中间。如果 b 当前长度为奇数,则可以选择:将 a 中的元素放到 b 中间元素的左边或右边。结果, a 变空, b 由 n…

【2023.11.24】Mybatis基本连接语法学习➹

基本配置 1.如果使用Maven管理项目&#xff0c;需要在pom.xml中配置依赖。 2.安装Mybatis-3.5.7.jar包 3.进行XML配置&#xff1a;这里将文件命名为mybatis-config.xml 配置数据库连接XML文件 <?xml version"1.0" encoding"UTF-8" ?> <!DO…

数据结构-归并排序+计数排序

1.归并排序 基本思想&#xff1a; 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列有序&#xff0c;再使子序列段间有序。若将两个有序表合并成一个…

Relabel与Metic Relabel

Prometheus支持多种方式的自动发现目标&#xff08;targets&#xff09;&#xff0c;以下是一些常见的自动发现方式&#xff1a; 静态配置&#xff1a;您可以在Prometheus配置文件中直接列出要监测的目标。这种方式适用于目标相对稳定的情况下&#xff0c;例如固定的服务器或设…

【多线程】Thread类的使用

目录 1.概述 2.Thread的常见构造方法 3.Thread的几个常见属性 4.启动一个线程-start() 5.中断一个线程 5.1通过共享的标记来进行沟通 5.2 调用 interrupt() 方法来通知 6.等待一个进程 7.获取当前线程引用 8.线程的状态 8.1所有状态 8.2线程状态和转移的意义 1.概述 …

字节序

计算机硬件有两种储存数据的方式&#xff1a;大端字节序big endian 和 小端字节序 little endian。 数值0x2211使用两个字节储存&#xff1a;高位字节是0x22&#xff0c;低位字节是0x11。 大端字节序&#xff1a;低位放高地址&#xff0c;高位字节在低地址&#xff0c;地址空间…

JDBC编程方法及细节

JDBC&#xff08;Java Database Connectivity&#xff09;是Java编程语言用于连接和操作数据库的API&#xff08;Application Programming Interface&#xff09;。它为开发人员提供了一组Java类和接口&#xff0c;用于与各种关系型数据库进行通信。使用JDBC&#xff0c;开发人…

路径规划之Best-First Search算法

系列文章目录 路径规划之Dijkstra算法 路径规划之Best-First Search算法 路径规划之Best-First Search算法 系列文章目录前言一、Best-First Search算法1.1 起源1.2 过程 三、简单使用 前言 Best-First Search算法和Dijkstra算法类似&#xff0c;都属于BFS的扩展或改进 一、…

【Python进阶笔记】md文档笔记第6篇:Python进程和多线程使用(图文和代码)

本文从14大模块展示了python高级用的应用。分别有Linux命令&#xff0c;多任务编程、网络编程、Http协议和静态Web编程、htmlcss、JavaScript、jQuery、MySql数据库的各种用法、python的闭包和装饰器、mini-web框架、正则表达式等相关文章的详细讲述。 全套md格式笔记和代码自…

【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录 一、collect_set()/collect_list():二、实际运用1、创建测试表及插入数据 :举例1&#xff1a;按照id&#xff0c;cur_day分组&#xff0c;取出每个id对应的所有rule&#xff08;不去重&#xff09;。举例2&#xff1a;按照id&#xff0c;cur_day分组&#xff0c;取出每…

【Unity入门】碰撞检测

碰撞器由来 1.系统默认会给每个对象(GameObject)添加一个碰撞组件(ColliderComponent)&#xff0c;一些背景对象则可以取消该组件。 2.在unity3d中&#xff0c;能检测碰撞发生的方式有两种&#xff0c;一种是利用碰撞器&#xff0c;另一种则是利用触发器。这两种方式的应用非…

左孩子右兄弟(Java详解)

目录 一、题目描述 二、题解 一、题目描述 对于一棵多叉树&#xff0c;我们可以通过“左孩子右兄弟” 表示法&#xff0c;将其转化成一棵二叉树。 如果我们认为每个结点的子结点是无序的&#xff0c;那么得到的二叉树可能不唯一。 换句话说&#xff0c;每个结点可以选任意子结…