线上ES集群参数配置引起的业务异常案例分析

本文介绍了一次排查Elasticsearch node_concurrent_recoveries 引发的性能问题的过程。

一、故障描述

1.1 故障现象

1. 业务反馈

业务部分读请求抛出请求超时的错误。

2. 故障定位信息获取

  • 故障开始时间

19:30左右开始

  • 故障抛出异常日志

错误日志抛出timeout错误。

  • 故障之前的几个小时业务是否有进行发版迭代。

未进行相关的发版迭代。

  • 故障的时候流量是否有出现抖动和突刺情况。

内部监控平台观察业务侧并没有出现流量抖动和突刺情况。

  • 故障之前的几个小时Elasticsearch集群是否有出现相关的变更操作。

Elasticsearch集群没有做任何相关的变更操作。

1.2 环境

  • Elaticsearch的版本:6.x。

  • 集群规模:集群数据节点超过30+。

二、故障定位

我们都知道Elasticsearch是一个分布式的数据库,一般情况下每一次查询请求协调节点会将请求分别路由到具有查询索引的各个分片的实例上,然后实例本身进行相关的query和fetch,然后将查询结果汇总到协调节点返回给客户端,因此存在木桶效应问题,查询的整体性能则是取决于是查询最慢的实例上。所以我们需要确认导致该故障是集群整体的问题还是某些实例的问题导致的。

2.1 集群还是实例的问题

1. 查看所有实例的关键监控指标

图片

图片

从监控图可以很明显的绿色监控指标代表的实例在19:30左右开始是存在异常现象,在这里我们假设该实例叫做A。

  • 实例A的指标es.node.threadpool.search.queue的值长时间达到了1000,说明读请求的队列已经满了。

  • 实例A的指标es.node.threadpool.search.rejected的值高峰期到了100+,说明实例A无法处理来自于业务的所有请求,有部分请求是失败的。

  • 集群整体的指标es.node.threadpool.search.completed有出现增长,经过业务沟通和内部平台监控指标的观察,业务流量平缓,并没有出现抖动现象,但是客户端有进行异常重试机制,因此出现增长是因为重试导致。

  • 实例A的指标es.node.threadpool.search.completed相比集群其他实例高50%以上,说明实例A上存在一个到多个热点索引。

  • 实例A的指标es.node.threadpool.cpu.percent的值有50%以上的增长。

  • 可通过指标es.node.indices.search.querytime和es.node.indices.search.querytimeinmillis的趋势可实例级别的请求耗时大致情况。

通过上面的分析,我们能给确认的是实例A是存在异常,但是导致业务请求超时是否是实例A异常导致,还需进一步分析确认。

2.2 实例异常的原因

到了这一步,我们能够非常明确实例是存在异常情况,接下来我们需要定位是什么导致实例异常。在这里我们观察下实例所在机器的MEM.CACHED、DISK.nvme0n1.IO.UTIL、CPU.SERVER.LOADAVG.PERCORE、CPU.IDLE这些CPU、MEMMORY、DISK IO等指标。

图片

1. CPU or IO

通过监控,我们可以很明显的看得到,DISK.nvme0n1.IO.UTIL、CPU.SERVER.LOADAVG.PERCORE、CPU.IDLE这三个监控指标上是存在异常情况的。

DISK.nvme0n1.IO.UTIL上深红色和深褐色指标代表的机器IO使用率存在异常,在这里我们假设深红色的机器叫做X,深褐色的机器叫做Y。

CPU.SERVER.LOADAVG.PERCORE和CPU.IDLE这俩个反应CPU使用情况的指标上代表绿色的机器在存在异常,在这里我们假设绿色的机器叫做Z。

  • 机器X的IO在故障时间之前就处于满载情况,机器X在整个过程当中是没有出现波动,因此可移除机器X可能导致集群受到影响。

  • 机器Y的IO在故障时间之前是处于满载情况,但是在故障期间IO使用率差不多下降到了50%,因此可移除机器Y可能导致集群受到影响。

  • 机器Z的CPU使用率在在故障期间直线下降,CPU.IDLE直接下降到个位数;CPU.SERVER.LOADAVG.PERCORE(是单核CPU的平均负载,2.5表示当前负载是CPU核数*2.5)直接增长了4倍,此时整个机器几乎都是处于阻塞的情况;DISK.nvme0n1.IO.UTIL则是从20%增长到了50%左右。其中CPU的指标是直线增长,IO的指标则是一个曲线增长。

异常实例A所在的机器是Z,目前机器Z的CPU和IO都存在增长情况,其中CPU已经到了系统的瓶颈,系统已经受到了阻塞,IO的利用率从20%增长到了50%,虽然有所增长,但是还未到达磁盘的瓶颈。

通过上面的分析,我们比较倾向于机器Z的CPU的异常导致了实例A的异常。这个时候我们需要确认是什么原因导致了机器Z的CPU异常,这个时候可通过内部监控平台的快照查看机器Z的快照信息。

图片

通过内部监控平台的快照,我们可以看到PID为225543的CPU使用率是2289.66%,166819的CPU的使用率是1012.88%。需要注意的是我们机器Z的逻辑核是32C,因此我们可认为CPU机器CPU的使用率理论上最高是3200%。但是使用率CPU最高的俩个实例的值加起来已经是超过了这个值,说明CPU资源已经是完全被使用完毕了的。

通过登陆机器Z,查询获取得到PID为225543的进程就是实例A的elasticsearch进程。

2. 实例CPU异常的原因

其实Elasticsearch本身是有接口提供获取实例上的热点进程,但是当时执行接口命令的时候长时间没有获取到结果,因此只能从其他方案想办法了。

获取实例上的热点进程:

curl -XGET /_nodes/xx.xx.xx.xx/hot_threads?pretty -s

实例A的CPU使用率高一般导致这个情况原因一个是并发过高导致实例处理不过来,另外一个则是存在任务长时间占据了进程资源,导致无多余的资源处理其他的请求。所以我们首先基于这俩个情形进行分析。

(1)是否并发度过高引起实例CPU异常

从之前的分析我们可以得知业务侧的流量是没有出现突增,search.completed的增长只是因为业务重试机制导致的,因此排除并发过高的原因了,那么剩下的就只有存在长任务的原因了。

(2)是否长任务导致实例CPU异常

根据_cat/tasks查看当前正在执行的任务,默认会根据时间进行排序,任务running时间越长,那么就会排到最前面,上面我们得知异常的实例只有A,因此我们可以只匹配实例A上的任务信息。

curl -XGET '/_cat/tasks?v&s=store' -s | grep A

一般情况下大部分任务都是在秒级以下,若是出现任务执行已超过秒级或者分钟级的任务,那么这个肯定就是属于长任务。

(3)什么长任务比较多

根据接口可以看得到耗时较长的都是relocate任务,这个时候使用查看接口/_cat/shards查看分片迁移信息,并且并发任务还很多,持续时间相较于其他任务来说很长。

curl -XGET '/_cat/shards?v&s=store' -s | grep A

由于当时是优先恢复业务,因此没有截图,最后只能从监控获取得到这个时间是有进行relocate分片的迁移操作:

  • es.node.indices.segment.count:实例级别segment的个数。

  • es.cluster.relocatingshards:集群级别正在进行relocate的分片数量。

图片

(4)什么原因导致了分片迁移变多

 根据日常的运维,一般出现分片迁移的情况有:

  • 实例故障。

  • 人工进行分片迁移或者节点剔除。

  • 磁盘使用率达到了高水平位。

根据后续的定位,可以排除实例故障和人工操作这俩项,那么进一步定位是否由于磁盘高水平位导致的。

查看实例级别的监控:

图片

查看master的日志:

[xxxx-xx-xxT19:43:28,389][WARN ][o.e.c.r.a.DiskThresholdMonitor] [master] high disk watermark [90%] exceeded on [ZcphiDnnStCYQXqnc_3Exg][A][/xxxx/data/nodes/0] free: xxxgb[9.9%], shards will be relocated away from this node
[xxxx-xx-xxT19:43:28,389][INFO ][o.e.c.r.a.DiskThresholdMonitor] [$B] rerouting shards: [high disk watermark exceeded on one or more nodes]

根据监控和日志能够进一步确认是磁盘使用率达到了高水平位从而导致的迁移问题。

(5)确认引起磁盘上涨的实例

通过内部监控平台的DB监控,查看机器级别上所有实例的监控指标

es.instance.data_size:

图片

通过监控我们分析可以得到浅黄色、深蓝色、浅绿色三个实例是存在较大的磁盘数据量大小的增长情况,可以比较明显导出磁盘增长到90%的原因是浅黄色线代表的实例导致的原因。

2.3 根因分析

针对实例A磁盘波动情况进行分析:

图片

查看这个监控图,你会发现存在异常:

  • 磁盘数据量的下降和上升并不是一个缓慢的曲线。

  • 2023-02-07 19:20左右也发生过磁盘下降的情况。

出现磁盘的下降和趋势一次性比较多的情况,根据以往的经验存在:

  • 大规模的刷数据。

  • relocate的分片是一个大分片。

  • relocate并发数比较大。

第一个排除了,大规模的刷数据只会导致数据上升,并不会出现数据下降的情况,因此要么就是大分片,要么就是并发较大。

查看是否存在大分片:

# curl -XGET '/_cat/shards?v&s=store' -s | tail
index_name                            4     r      STARTED 10366880  23.2gb
index_name                            4     p      STARTED 10366880  23.2gb
index_name                            0     r      STARTED 10366301  23.2gb
index_name                            0     p      STARTED 10366301  23.2gb
index_name                            3     p      STARTED 10347791  23.3gb
index_name                            3     r      STARTED 10347791  23.3gb
index_name                            2     p      STARTED 10342674  23.3gb
index_name                            2     r      STARTED 10342674  23.3gb
index_name                            1     r      STARTED 10328206  23.4gb
index_name                            1     p      STARTED 10328206  23.4gb

查看是否存在重定向并发数较大:

# curl -XGET '/_cluster/settings?pretty'
{
... ...
  "transient" : {
    "cluster" : {
      "routing" : {
        "allocation" : {
          "node_concurrent_recoveries" : "5",
          "enable" : "all"
        }
      }
    }
  }
}

发现参数cluster.allocation.node_concurrent_recoveries设置成了5,我们看下官方针对这个参数的解释:Cluster Level Shard Allocation | Elasticsearch Guide [6.3] | Elastic

大致意思是同一个时间允许多个的分片可以并发的进行relocate或者recovery,我们就按照较大的分片数量20G*5,差不多就是100G左右,这个就解释了为什么data_size的增长和下降短时间内非常大的数据量的原因了。

到目前为止,我们能够确认的是因为分片迁移的问题消耗了实例A很大的CPU资源,从而导致实例A的CPU指标非常的高。

三、解决方案

基于上面的分析,我们假设由于实例A的异常导致集群整的异常;基于这种假设,我们尝试将实例A剔除集群,观察集群和业务的请求是否能够恢复。

3.1 猜想验证

将实例的分片迁移到其他的实例上,执行以下命令之后,可以明显的发现实例上的请求基本上下降为零了,并且业务反馈超时也在逐步的减少,基于这个情况验证了我们的猜想,是实例A的异常导致了业务的请求超时的情况。

curl -XPUT  /_cluster/settings?pretty -H 'Content-Type:application/json' -d '{
    "transient":{
        "cluster.routing.allocation.exclude._ip": "xx.xx.xx.xx"
    }
}'

图片

3.2 根本解决

猜想验证确认之后,那我们现在基于实例A的CPU的异常结果进行相关的优化:

修改参数cluster.routing.allocation.node_concurrent_recoveries

  • 该参数默认值是2,一般是不建议修改这个参数,但是有需要快速迁移要求的业务可以动态修改这个参数,建议不要太激进,开启之后需要观察实例、机器级别的CPU、磁盘IO、网络IO的情况。

修改参数cluster.routing.use_adaptive_replica_selection

  • 开启该参数之后,业务针对分片的读取会根据请求的耗时的响应情况选择下次请求是选择主分片还是副分片。

  • 6.3.2版本默认是关闭了该参数,业务默认会轮询查询主副分片,这在部分实例异常的情况会影响集群的整体性能。针对生产环境、单机多实例混合部署的情况下,建议开启该参数,对集群的性能有一定的提高。

  • 7.x的版本默认是开启了这个参数。

curl -XPUT  /_cluster/settings?pretty -H 'Content-Type:application/json' -d '{
    "transient":{
        "cluster.routing.allocation.node_concurrent_recoveries": 2,
        "cluster.routing.use_adaptive_replica_selection":true   
    }
}'

直接扩容或者迁移实例也是比较合适的。

四、总结

在本次故障,是由于集群参数配置不正确,导致集群的一个实例出现异常从而导致了业务的请求异常。但是在我们在进行故障分析的时候,不能仅仅只是局限于数据库侧,需要基于整个请求链路的分析,从业务侧、网络、数据库三个方面进行分析:

  • 业务侧:需确认业务的所在的机器的CPU、网络和磁盘IO、内存是否使用正常,是否有出现资源争用的情况;确认JVM的gc情况,确认是否是因为gc阻塞导致了请求阻塞;确认流量是否有出现增长,导致Elasticsearch的瓶颈。

  • 网络侧:需确认是否有网络抖动的情况。

  • 数据库侧:确认是Elasticsearch是否是基于集群级别还是基于实例级别的异常;确认集群的整体请求量是否有出现突增的情况;确认异常的实例的机器是否有出现CPU、网络和磁盘IO、内存的使用情况。

确认哪方面的具体故障之后,就可以进一步的分析导致故障的原因。

参数控制:

Elasticsearch本身也有一些参数在磁盘使用率达到一定的情况下来控制分片的分配策略,默认该策略是开启的,其中比较重要的参数:

  • cluster.routing.allocation.disk.threshold_enabled:默认值是true,开启磁盘分分配决策程序。

  • cluster.routing.allocation.disk.watermark.low:默认值85%,磁盘使用低水位线。达到该水位线之后,集群默认不会将分片分配达到该水平线的机器的实例上,但是新创建的索引的主分片可以被分配上去,副分片则不允许。

  • cluster.routing.allocation.disk.watermark.high:默认值90%,磁盘使用高水位线。达到该水位线之后,集群会触发分片的迁移操作,将磁盘使用率超过90%实例上的分片迁移到其他分片上。

  • cluster.routing.allocation.disk.watermark.high:默认值95%。磁盘使用率超过95%之后,集群会设置所有的索引开启参数read_only_allow_delete,此时索引是只允许search和delete请求。

补充:

一旦一台机器上的磁盘使用率超过了90%,那么这台机器上所有的ES实例所在的集群都会发起分片的迁移操作,那么同一时间发起并发的最大可能是:ES实例数*cluster.routing.allocation.node_concurrent_recoveries,这个也会导致机器的CPU、IO等机器资源进一步被消耗,从而所在的实例性能会更差,从而导致路由到机器上实例的分片的性能会更差。

一旦一台机器上磁盘使用率超过95%,那么这台机器上所有的实例所在的集群都会开启集群级别的参数read_only_allow_delete,此时不仅仅是一个集群,而是一个或者多个集群都无法写入,只能进行search和delete。

文章转载自:vivo互联网技术

原文链接:https://www.cnblogs.com/vivotech/p/17851197.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/185012.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大数据 DataX-Web 详细安装教程

目录 一、DataX-Web 介绍 1.1 DataX-Web 是什么 1.2 DataX-Web 架构 二、DataX-Web 安装部署 2.1 环境要求 2.2 安装 2.3 部署 2.4 数据库初始化 2.5 配置 2.6 启动服务 2.6.1 一键启动所有服务 2.6.2 一键取消所有服务 2.7 查看服务(注意&#xff01…

2024深圳电子展,加快粤港澳电子信息发展,重点打造“湾区经济”

在“十四五”期间,中国电子信息产业面临着新形势和新特点。随着国家对5G、人工智能、工业互联网、物联网等“新基建”的加速推进,以及形成“双循环”新格局的形势,新型显示、集成电路等产业正在加速向国内转移。这一过程不仅带来了新的应用前…

HTTP协议抓包工具Charles 抓包图文完整教程

Charles是在您自己的计算机上运行的Web代理(HTTP代理 / HTTP监视器),您的网络浏览器(或任何其他Internet应用程序)配置为通过Charles访问Internet,Charles可以为您记录并显示发送和接收的所有数据。 Http抓…

盘点43个Python登录第三方源码Python爱好者不容错过

盘点43个Python登录第三方源码Python爱好者不容错过 学习知识费力气,收集整理更不易。 知识付费甚欢喜,为咱码农谋福利。 项目名称 bnuz中国电信校园网模拟登录,python selenium BNUZ教务系统认证爬虫Python语言实现,你可以用…

UNETR++:深入研究高效和准确的3D医学图像分割

论文:https://arxiv.org/abs/2212.04497 代码:GitHub - Amshaker/unetr_plus_plus: UNETR: Delving into Efficient and Accurate 3D Medical Image Segmentation 机构:Mohamed Bin Zayed University of Artificial Intelligence1, Univers…

工业级5G路由器:稳定性更高,网络速度更快!

随着5G技术的发展,5G路由器也越来越受到人们的关注。特别是工业级5G路由器,它的应用范围更广,稳定性更高,网络速度更快,已成为许多企业和工业领域的必备选择。 一、工业级5G路由器的特点 工业级5G路由器具有很多独特的…

社区物联网云服务架构设计

文章目录 1 摘要2 架构图2.1 社区物联网云服务网络拓扑图2.2 社区物联网云服务通讯流程图2.3 社区远程开锁功能流程图 3 应用场景 1 摘要 随着社区管理越来越智能化,社区物联网升级与改造的市场空间也越来越大。社区物联网包含楼宇对讲、门禁门锁、通道闸等等设备系…

Vue3(setup)中使用vue-cropper图片上传裁剪插件,复制代码直接使用

最近在项目中用到上传裁剪,看了一下代码,觉得这插件可可以。梳理了一下代码分享给大家 前端UI组件element-plus 如果你也用到了 ,快速帮你解决了问题,别忘记点赞收藏 1.首先看效果图 因为版本vue-cropper 众多 ,虽然网上有各…

S71200通过PROFINET协议和岛电数字控制器通讯

项目要求 西门子S71200PLC需要通过PROFINET协议和岛电数字控制器(型号:SRS13A)通讯,读取温度的测量值PV和设定值SV。 项目实施 采用NET90-PN-MBT(以下简称“网关”),它是一款将Modbus TCP/RT…

用户隐私与游戏体验如何平衡?第二周 Web3 开发者集结精华回顾

由 TinTinLand 联合 Dataverse 、Web3Go 、Subquery 、Cregis 、Litentry、Aspecta、SpaceID、ANOME、VARA&Gear、Moonbeam、Mantle、Obelisk 等 10 余家 Web3 项目共同举办的 Web3 开发者赢积分活动已举办至第三周。精彩线上主题活动分享、近距离交流体验互动,…

京东采销面对面,洞悉行业新趋势 京东3C数码生态大会在武汉圆满举行

为促进湖北省3C数码产业发展,本地企业降本增效、促进行业交流、充分发挥京东集团全链路生态服务能力,支持地方3C特色产业提质增量。2023年11月23日,由京东零售、京东物流主办,湖北省电子商务行业协会联合协办的“聚力共赢、携手共…

想问问各位大佬,网络安全这个专业普通人学习会有前景吗?

网络安全是一个非常广泛的领域,涉及到许多不同的岗位。这些岗位包括安全服务、安全运维、渗透测试、web安全、安全开发和安全售前等。每个岗位都有自己的要求和特点,您可以根据自己的兴趣和能力来选择最适合您的岗位。 渗透测试/Web安全工程师主要负责模…

山西电力市场日前价格预测【2023-11-25】

1.日前价格预测 预测说明: 如上图所示,预测明日(2023-11-25)山西电力市场全天平均日前电价为312.19元/MWh。其中,最高日前电价为350.80元/MWh,预计出现在09:15。最低日前电价为273.49元/MWh,预…

NX二次开发UF_CSYS_map_point 函数介绍

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan UF_CSYS_map_point Defined in: uf_csys.h int UF_CSYS_map_point(int input_csys, double input_point [ 3 ] , int output_csys, double output_point [ 3 ] ) overview 概述 Ma…

2.19 keil里面工具EventCorder使用方法

设置方法如下: 添加初始化代码如下: eventRecord.c #include "eventRecord.h" #include "usart.h" extern UART_HandleTypeDef *pcControlUart;/* RecordEvent初始化 */ void InitEventRecorder(void) {#ifdef RTE_Compiler_Even…

Elasticsearch知识

目录 Elasticsearch逻辑设计和物理设计 逻辑设计物理设计Elasticsearch原理 倒排索引文档的分析过程保存文档搜索文档写数据的底层原理 数据刷新(fresh)事务日志的写入ES在大数据量下的性能优化 文件系统缓存优化数据预热文档(Document&…

名酒新周期,西凤复兴的“四个自信”

执笔 | 文 清 编辑 | 萧 萧 11月18日,四大名酒之一、凤香品类龙头企业的西凤酒,携全系列产品亮相AIIC酒业创新展暨中国名酒成就展。 在当日下午举行的“筑梦新征程”2023中国名酒纪念大会暨《大师》影像志上线仪式上,陕西西凤酒股份有限…

linux网络之网络层与数据链路层

文章目录 一、网络层 1.IP协议 2.IP协议头格式 3.网段划分 4.特殊ip地址 5.IP地址的数量限制 6.私有ip和公网IP 7.路由 二、数据链路层 1.以太网 2.以太网帧格式 3.MAC地址 4.对比理解MAC地址和IP地址 5.MTU 6.ARP协议 ARP协议的工作流程 ARP数据报的格式 7.DNS 8.ICMP协议 9.N…

无需外接显示器,直接使用windows安装树莓派系统并可远程桌面登录

准备工作: 1.安装树莓派官方烧录工具 raspberry pi imager 2.下载树莓派系统镜像(也可选择在线下载安装) 打开imager工具,选择需要安装包树莓派版本 点击"NEXT",在弹出的选项中选择编辑设置。 设置登录名和密码,已经所连接的wif…

针对CSP-J/S的每日一练:Day 11

一、审题 题目描述 给定两个大小分别为 m m m 和 n n n 的正序(从小到大)数组 n u m s 1 nums1 nums1 和 n u m s 2 nums2 nums2。请你找出并返回这两个正序数组的中位数。 算法的时间复杂度应该为 O ( l o g ( m n ) ) O(log (mn)) O(log(mn)) 。…