详解深度学习中的图神经网络GNN

引言 

图片

图神经网络GNN是深度学习的一个分支。

深度学习的四个分支对应了四种常见的数据格式,前馈神经网络FNN处理表格数据,表格数据可以是特征向量,卷积神经网络CNN处理图像数据,循环神经网络RNN处理时序数据,图神经网络GNN处理图数据。

这里的FNN指的是如下图所示的带有输入层,隐藏层,输出层的网络。

图片

但这四种对应关系并不是一成不变。

如果将图像拉直成向量,同样可以用FNN来处理。

声音文本这类时序数据,用RNN类型的网络最适合,但如果你把一个句子当作一个1*N的矩阵,那就可以用CNN处理了,只不过,CNN需要堆叠多个层来抓取时序数据中的上下文信息,这在图像领域被称为感受野。

注意:虽然可以通过一定的技巧把句子表示成矩阵然后用CNN处理,但从本质上来说,CNN还是不如RNN更适合处理时序数据。

如果将图像划分成patch,这些pathces组成序列,同样也可以用Transformer处理,这就是Vision Transformer:ViT。

而今天要讲的GNN,既能处理表格数据,又能处理图像,文本。

更准确地说,只要能表示成GNN兼容的图数据结构就能用GNN处理。

今天的文章来自distill发布的一篇博文:A Gentle Introduction to Graph Neural Networks。

网址:https://distill.pub/2021/gnn-intro/B站沐神视频讲解:https://www.bilibili.com/video/BV1iT4y1d7zP/?spm_id_from=333.999.0.0

这篇文章写的非常好,亮点是不光有交互式图表,还有PlayGround,可见作者是下了一番功夫的。

先科普一下什么是Playground?

Playground通常指在机器学习和人工智能领域用来交互式体验和可视化AI模型的一种系统或平台。

下面展示两个AI Playground。

图片

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/playground/models/clip

图片

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/playground/models/codellama

NVIDIA NGC或者Hugging face上有更多好玩的AI Playground,大家可以亲自去体验一下。https://huggingface.co/

https://catalog.ngc.nvidia.com/

A Gentle Introduction to Graph Neural Networks

https://distill.pub/2021/gnn-intro/

但我不会将上面的文章原样照搬过来,而是进行概括性的总结,大家一定一定去阅读原文,因为原文里有大量的交互式图表和Playground,能加速对GNN的理解。

今天的主角是GNN,而GNN处理的对象是图Graph。跟其它神经网络一样,在其出现之前,都有传统的方法来处理对应的数据结构。

但是在数据量和算力的加持下,为了完成更复杂的任务,对应的神经网络应运而生,GNN也是如此。

后续内容主要分为四部分

1.什么样的数据可以很自然的表示成图

2.图与其它类型数据的不同之处以及如何应对这种不同

3.构建一个GNN

4.构建一个Playground在真实数据上进行训练

什么是图?

图是由节点和边组成的,用于表示对象之间关系的数据结构。

图也分为有向图无向图,例如,社交媒体中,如果互相关注了则是无向图,如果像B站这样,我关注了你,但你并没有关注我,则是有向图。

图片

图片

节点有自己的属性,边有自己的属性,整个图也有自己的属性,如上图,属性可以用标量或者向量表示。向量大小可以不一致。

前面已经透漏了GNN可以处理图像和文本,那么图像和文本就可以表示成图。

先透露一下计算机如何存储图,一种是邻接矩阵,一种是邻接表

图像的每个像素即是一个节点,节点的属性自然就是RGB值,相邻像素之间用一条边来表示相邻关系,这里用邻接矩阵来表示连接性。

图片

同理,一个句子中每个字符,每个单词,每个Token都可以看作是一个节点,相邻节点之间可以用一条有向边相连,这就构成了一个有向图。

图片

除此之外,还有很多其它数据可以表示成图。

分子由两个或多个原子通过共用电子对构成化学键而连接成一个整体,分子之间不同的连接方式构成了不同的物质。

图片

社会是一个大家庭,所有成员和之间的关系构成了一个复杂的社交网络。

图片

如果能够充分利用这个网络,就能发挥巨大价值,例如,知识图谱,推荐系统。

引用关系也可以组织成图,例如,维基百科中每个网页都会列出引用资料。

好了,到此我们已经能够把很多事物表示成图的形式,这样就够用GNN来处理了,那到底能干什么呢?

GNN主要能处理三种类型的任务。

图层面任务

对图的整体进行预测,GNN输出对整个图的预测属性,例如,下图中分辨出具有两个环的图,这就是一个针对整个图的分类任务。

图片

对于图像和文本而言,图层面的任务类似于MINIS数字分类,或者句子情感分析,例如。判断一个句子表达的是正向情绪还是负面情绪。

顶点层面任务

GNN预测图中每一个节点的属性,例如,下图,预测社交网络中的成员是否是诈骗分子。这就是一个节点分类任务。

图片

对于图像和文本而言,顶点层面的任务类似于图像分割,图像分割不就是对每个像素分类嘛,对于文本,就是预测句子中每个单词的词性(例如名词、动词、副词等)。

边层面任务

边的存在与否是一种结构属性,也就是连接性,GNN也可以预测图中边的非结构属性,什么是非结构属性?对于一个社交网络而言,边代表节点之间有关系,但如何度量亲疏程度呢?这就涉及边的非结构属性了。

预测亲疏程度是一个回归任务,下图则是一个分类任务,每一条边只能是watching,fighting,standing on中的一种。

图片

图片

后面我们会看到,这三类任务可以用一个统一的GNN网络解决。

​​​​​​​

GNN所面对的挑战

前面对于节点,边,图的属性预测GNN都能处理,但对于节点之间的连接性预测却是一种挑战,前面说过用邻接矩阵来表示连接性,当节点数增加,矩阵会变得非常稀疏,内存利用率很低,

例如,下图,仅有四个节点的随机组合对应的邻接矩阵就非常庞大了。

何况更多节点呢?

图片

另外,当你将矩阵转置后,GNN输出结果不应该改变,因为转置没有改变节点之间的关系。

图片

图片

为了解决邻接矩阵带来的挑战,邻接列表应运而生。

图片

到此我们已经扫清了所有障碍,接下来我们就构建一个简单的分类网络,来看看GNN是如何做预测的?

图片

前面我们说过节点,边,图的属性就是一堆向量,也就是前面说的表格数据,处理向量用MLP就可以了,当然你也可以用其他网络,如上图,节点,边,图各有一个MLP,所有点参数共享,也就是所有点共用一个MLP,所有边共用一个MLP。

另外,Layner n+1与上一层相比,图的连接性没变,只改变了属性。也就是可以继续使用初始的邻接链表。

上图构成了一个GNN block,也叫做GNN层,类似CNN中的卷积层,多个GNN 层可以进行累加形成更复杂的网络。

有了GNN block,如果要构建一个节点二分类任务,那么用下面这个网络就够了。

图片

但是,如果一个图只有边有信息,而节点没有存储信息,又要对节点进行分类,该怎么办?

此时就需要把边的信息利用起来了,这被称为信息聚合

图片

如上图,当对一个节点进行预测时,将所有与其相连的边的信息聚合起来作为节点的属性。

聚合操作可以时平均值,最大值,总和

所以,有了信息聚合后,如果只有边的属性,要对节点分类,网络结构如下:

图片

同理,有了信息聚合后,如果只有节点信息,要对边分类,网络结构如下:

图片

有了信息聚合后,只有节点信息,对图分类:

图片

最终的GNN结构如下:

图片

有了信息聚合,就能构建更复杂的GNN网络,这个网络不仅能二分类同样适用于多分类问题。

但是你发现没,上面这个简单的GNN网络并没有利用连接性信息,每个节点以及每条边和全局上下文都是独立处理的。只有在聚合信息进行预测时才使用连接性。

所以,我们可以更进一步的利用聚合信息操作,这样就能进行更复杂的预测。

那么该怎么做呢?

我们可以使用消息传递的方法来实现这一点,即相邻节点或边之间交换信息并影响彼此更新的嵌入。

图片

如上图,也就是在处理当前节点时,把相邻节点的信息聚合过来。

这跟卷积操作有点像,一个特征图的像素对应上一层的一个相邻区域。

图片

有了信息传播操作后,我们的GNN网络更新如下:

节点层面任务:

图片

边层面任务:

图片

图层面任务:

图片

最后,展示了一个Playground,可以改变网络的层数,聚合操作类型,以及各个属性向量的长度,可以通过最终的模型性能来展示各个参数的影响。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/183394.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NLP的使用

参考: Apache openNLP 简介 - 链滴 (ld246.com) opennlp 模型下载地址:Index of /apache/opennlp/models/ud-models-1.0/ (tencent.com) OpenNLP是一个流行的开源自然语言处理工具包,它提供了一系列的NLP模型和算法。然而,Open…

手写数字可视化_Python数据分析与可视化

手写数字可视化 手写数字流形学习 手写数字 手写数字无论是在数据可视化还是深度学习都是一个比较实用的案例。 数据在sklearn中,包含近2000份8 x 8的手写数字缩略图。 首先需要先下载数据,然后使用plt.imshow()对一些图形进行可视化: 打开c…

新材料制造ERP用哪个好?企业应当如何挑选适用的

有些新材料存在特殊性,并且在制造过程中对车间、设备、工艺、人员等方面提出更高的要求。还有些新材料加工流程复杂,涉及多种材料的请购、出入库、使用和管理等环节,解决各个业务环节无缝衔接问题是很多制造企业面临的管理难题。 新材料制造…

计算机网络——物理层相关习题(计算机专业考研全国统考历年真题)

目录 2012-34 原题 答案 解析 2018-34 原题 答案 解析 2009/2011-34 原题 答案 解析 2016-34 原题 答案 解析 2014-35/2017-34 原题 答案 解析 2013-34 原题 答案 解析 2015-34 原题 答案 解析 物理层的协议众多,这是因为物理层…

VSDX Annotator v1.16.1(Visio 绘图注释工具)

VSDX Annotator是一款在Mac上操作MSVisio绘图的工具,提供了广泛的注释可能性,以及在多平台环境中共享可视文档。它确保共有12个注释工具,并允许添加注释、标注、注释、块、图形文件等。该应用程序允许用户在Mac上查看Visio流程图、图表、方案…

Redis集群环境各节点无法互相发现与Hash槽分配异常 CLUSTERDOWN Hash slot not served的解决方式

原创/朱季谦 在搭建Redis5.x版本的集群环境曾出现各节点无法互相发现与Hash槽分配异常 CLUSTERDOWN Hash slot not served的情况,故而把解决方式记录下来。 在以下三台虚拟机机器搭建Redis集群—— 192.168.200.160192.168.200.161192.168.200.162启动三台Redis集…

Element中el-table组件右侧空白隐藏-滚动条

开发情况&#xff1a; 固定table高度时&#xff0c;出现滚动条&#xff0c;我们希望隐藏滚动条&#xff0c;或修改滚动条样式&#xff0c;出现table右边出现15px 的固定留白。 代码示例 <el-table class"controlTable" header-row-class-name"controlHead…

springboot+jsp学生健康体检档案评估系统_ju8pu

本基于Java的学生健康档案管理信息系统采用Java语言来进行开发&#xff0c;从角色上分为管理员&#xff0c;辅导员&#xff0c;档案管理员和学生几个具体功能如下 &#xff08;1&#xff09;管理员部分功能主要包括&#xff0c;个人中心&#xff0c;档案员管理&#xff0c;辅…

C#,数值计算——多项式插值与外推插值(Poly2D_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Object for two-dimensional polynomial interpolation on a matrix.Construct /// with a vector of x1 values, a vector of x2 values, a matrix of tabulated /// func…

STM32:基本定时器原理和定时程序

一、初识定时器TIM 定时器就是计数器&#xff0c;定时器的作用就是设置一个时间&#xff0c;然后时间到后就会通过中断等方式通知STM32执行某些程序。定时器除了可以实现普通的定时功能&#xff0c;还可以实现捕获脉冲宽度&#xff0c;计算PWM占空比&#xff0c;输出PWM波形&am…

编程参考 - C++ Code Review: 一个计算器的项目

GitHub - jroelofs/calc: Toy Calculator Toy Calculator 1&#xff0c;拿到一个project&#xff0c;第一眼看&#xff0c;没有配置文件&#xff0c;说明没有引入持续集成系统&#xff0c;continuous integration system。 2&#xff0c;然后看cmake文件&#xff0c;使用的子…

Java基层卫生健康云综合管理(云his)系统源码

云HIS&#xff08;Cloud-Based Healthcare Information System&#xff09;是基于云计算的医院健康卫生信息系统。它运用云计算、大数据、物联网等新兴信息技术&#xff0c;按照现代医疗卫生管理要求&#xff0c;在一定区域范围内以数字化形式提供医疗卫生行业数据收集、存储、…

【LeetCode刷题-链表】--61.旋转链表

61.旋转链表 方法&#xff1a; 记给定的链表的长度为n,注意当向右移动的次数k>n时&#xff0c;仅需要向右移动k mod n次即可&#xff0c;因为每n次移动都会让链表变为原状 将给定的链表连接成环&#xff0c;然后将指定位置断开 /*** Definition for singly-linked list.*…

基于element自动表单设计

需求是根据JSON文件生成表单&#xff0c;包含配置和自动model属性以及表单验证&#xff0c;数据回显。 目录 动态表单数据示例&#xff1a; 表单设置JSON示例&#xff1a; 表单输入JSON示例&#xff1a; 表单按钮JSON示例&#xff1a; 抛出数据示例&#xff1a; 动态表单…

【一文搞定】在Docker中搭建centos7远程桌面环境(Xfce、Gnome两种方式)

目录 前言一、基于GNOME构建远程桌面二、基于Xfce构建远程桌面&#xff08;轻量级&#xff09; 前言 本文提供两种安装方式&#xff0c;均自己测试过&#xff0c;最后还是选择了Xfce&#xff0c;因为它比较轻量级&#xff0c;占用资源较少。大家也可以都试试&#xff0c;比较感…

zerotier + rclone 异地同步minio文件

zerotier rclone 异地同步minio文件 场景说明解决方案部署zerotier私有化服务docker部署zerotierzerotier客户端下载加入虚拟网络web控制台设置测试网络连通性 使用rclone同步minio数据解压后文件结构使用cmd配置rclone本地minio配置远程minio配置 查看配置 同步文件 场景说明…

python获取json所有节点和子节点

使用python获取json的所有父结点和子节点 并使用父节点加下划线命名子节点 先展示一段json代码 {"level1": {"level2": {"level3": [{"level4": "4value"},{"level4_2": "4_2value"}]},"level2_…

黑马点评12-实现好友关注/取关功能,查看好友共同关注列表

好友关注 数据模型 数据库中的tb_follow记录博主与粉丝的关系 tb_follow表对应的实体类 Data EqualsAndHashCode(callSuper false) Accessors(chain true) TableName("tb_follow") public class Follow implements Serializable {private static final long ser…

从0开始学习JavaScript--JavaScript元编程

JavaScript作为一门灵活的动态语言&#xff0c;具备强大的元编程能力。元编程是一种通过操作程序自身结构的编程方式&#xff0c;使得程序能够在运行时动态地创建、修改、查询自身的结构和行为。本文将深入探讨JavaScript中元编程的各个方面&#xff0c;包括原型、反射、代理等…