问答知识库快速构建技术解析及行业实践

对话式 AI 类产品,已经在各行各业中实现规模化的应用。随着科技创新支撑下的高质量行业发展,人工智能已成为数字经济时代的核心生产力。其中对话式 AI,作为人工智能技术的一个分支,随着深度学习、预训练模型等技术的突破,逐渐在各行各业中实现了从产品测试到规模化应用的落地。比如:智能客服、外呼机器人、语音助手等产品应用。

据艾瑞咨询 2022 年《中国对话式 AI 行业发展白皮书》所示,预计到 2026 年,对话式 AI 的核心产品规模将达到 108 亿元,带动相关产业规模超 385 亿元,2021~2026 年的年均复合增长率(CAGR)分别为 18.9%和 25%;对话式 AI 作为“替代与辅助人工”的核心应用,为市场最原始直观的“降本增效”价值诉求提供了先行落地的有效解决方案。众多企业将引入“对话式 AI”作为智能化转型的首要试验田。

艾瑞咨询:2019-2026 年中国对话式 AI 产品及带动相关产业规模

企业在应用对话式 AI 产品中,通常会遇到以下两个痛点:

  1. 部署阶段-问答知识库构建周期长,用户冷启动门槛高。主要表现在:1、企业数据分散在会话日志、网页等多种文档中,需要人工收集。2、企业数据积累较少,需要业务专家介入梳理。3、人工标注成本居高不下,易受个人主观意识左右,影响模型训练效果。
  2. 运营阶段-AI 服务效果不稳定,且缺乏有效的监控手段,不能及时进行模型调优。主要表现在:1、系统中人工构建知识库质量不可控,导致 AI 服务效果不稳定。2、系统对未覆盖知识无法做到及时发现,导致无法回答,用户体验差。3、系统无法对错误案例(BadCase)及时分析,模型无法及时更新。

上述两个痛点说明,对话式 AI 产品若要实际满足用户需求,仅拥有对话能力是不够的,更需要完善的问答知识库作为底层支撑。换句话说,问答知识库的规模和质量直接决定了对话式 AI 产品的整体服务效果。然而仅靠人力堆积的模式来构建和运营知识库,不仅服务质量得不到保证,而且项目运营成本也存在失控的风险,早已无法适应市场的要求和增速。

问答知识库的快速构建及闭环运营能力,是解决上述两个痛点的关键。

问答知识库快速构建及闭环运营的核心技术介绍
问答知识库的构建和运营是一项系统工程,冷启动阶段运用系统工具辅助人工快速构建知识体系,推进对话式 AI 落地;运营阶段运用大数据挖掘技术,实现价值数据自动回流,知识库持续更新。两套体系搭建完成后将形成数据闭环,并相辅相成,逐步形成“双飞轮”的自运营体系。其整体运行逻辑如下图:

知识构建及闭环运营工具流程图

如图所示:冷启动阶段运用知识挖掘、智能标注、智能荐句、质量检查等工具辅助人工快速构建知识体系;运营阶段运用新知识发现、BadCase 分析、质量检查等工具保持模型持续迭代。其中用到的核心技术主要有文本聚类、样本增广、知识质量检查等。下面就针对这些核心技术做下介绍。

1、文本聚类技术,可以为知识库持续挖掘和发现新的知识:

文本聚类技术在知识构建及闭环运营工具中,主要用于新知识的发现(无法聚到现有的任何一个意图类别中)和拒识问题的归纳(可以聚到现有意图体系中,但是现在无法应答,需要人工处理)。当前的主流算法为无监督句向量表示+聚类算法,聚类算法常采用 K-means、DBSCAN 等,目前常用的无监督句向量表示方法有:

表 1.目前常用的无监督句向量表示方法

随着深度学习的发展,预训练模型目前是向量表示的主流方法。最简单的方式是使用 BERT 的[CLS]token 对应的 embedding 作为整句话的句向量表示。但是该向量存在向量坍塌的问题,即使差异性非常大的两个句子,相似度得分也可能会比较高。因此引入了对比学习,对比学习主要思想是让相似的文本对应的向量表示尽可能接近,不相似的文本对应的向量尽可能远离,目前预训练+对比学习是获取无监督句向量的主流方法。

经过调研,研究院团队将句向量的获取方式由无监督升级为了半监督,将少量带标注的先验知识融入模型,使模型能够学习到更具区分性的向量表示,从而进一步提升了文本聚类的效果。下图为某电商场景半监督聚类和无监督聚类效果对比,可以明显看出半监督聚类结果更加内聚(半监督对于相似的文本只聚出了 3 类,而无监督聚出了 7 类)。

表 2.某电商场景半监督聚类和无监督聚类效果对比

我们也在公开数据集上对比了各种聚类算法的效果,半监督模型+对比学习的效果提升明显。

表 3.公开数据集上各聚类算法的效果对比

聚类效果评价指标:

NMI(Normalized Mutual Information, 标准化互信息)

AMI(Adjusted Mutual Information, 调整互信息)

AR(Adjusted Rand, 调整兰德指数)

文本聚类在实践中发现的新知识和重新归纳的拒识问题经人工审核,采用率可达 87%。大大降低了运营人员人力投入。为提升聚类速度,我们使用 batch K-means 替换 K-means 算法,在聚类效果不变的情况下,速度提升了近 3 倍。

2、样本增广技术,可以解决知识库语料稀少和不平衡的问题:

样本增广技术,主要应用在智能荐句工具中解决知识库语料稀少和不平衡问题。当前主流样本增广算法如下:

表 4.当前主流样本增广算法

中关村科金人工智能研究院结合一线运营人员与客户的实际应用反馈,系统分析了上述各方案的优缺点之后,创造性地提出了一种融合了文本检索和生成式样本增广的技术,作为最终的样本增广方案。

其中文本检索是利用研究院积累的大量真实行业知识语料(已脱敏)作为检索底库,基于文本语义向量匹配技术从底库中获取语义相似样本,可以同时兼顾增广样本的多样性、准确性和真实性。我们采用融合了对比学习的半监督预训练模型获取文本语义向量,用余弦相似度作为度量指标,为提升检索速度,使用了 milvus 向量索引。生成式样本增广我们采用了 Prefix_LM 结构模型,然后在生成结果基础上做了进一步的数据后处理。

大致流程为:当用户输入待增广样本,系统先从历史积累的语料库中检索相似样本,当检索数量能达到用户需求时,直接返回检索结果;如果数量不足,再通过生成式样本增广算法进行扩充。考虑到生成式样本增广的不可控问题,我们做了两个数据后处理操作,进一步提升生成样本的质量。一是通过计算生成样本与原始样本的相似度,如果相似度太低则不采纳该生成结果;二是通过语言模型对生成样本进行打分,如果分数太低也不采纳。最终增广样本的人工采用率近 70%,大大降低了运营人员人力投入成本。下面以“怎么提现呢”为例,样本增广效果对比如下:

表 5.样本增广效果对比

3、知识质量检查技术,可以检测数据标注质量并对潜在错误样本进行矫正:

知识质量检查技术主要用于评估数据标注质量并挑选出潜在的标注错误样本。我们采用了 Cleanlab 工具,对标注样本进行了 1~5 的噪音指数评分,值越高说明人工标注结果越有可能存在错误,需要对标注进行复核纠正。经过质量检查和标注矫正后,意图识别准确率平均可提升 6%~15%。以保险领域的一部分知识为例,质量检查结果如下:

表 6.某保险场景部分知识质量检查结果

问答知识库构建技术助力多行业快速落地对话式 AI

中关村科金人工智能研究院自主研发的问答知识库快速构建工具,目前已在保险、电商、银行、零售等多个行业,永安保险、步步高等多个头部企业中,实现落地应用。在上述场景中,基于文本聚类技术进行新知识发现,可发现占对话日志总量 2%~3%的无法应答的新知识,经人工审核,采用率可达 87%;智能荐句工具通过样本增广技术为每条知识平均增广 10 条相似样本,经过人工审核,采用率近 70%;知识质量检查工具可以在减少 85%人工审核工作量下提升 10%的意图识别准确率;BadCase 分析及回流工具平均每周可以自动回流一次知识库并重新训练一次模型。

实践证明,问答知识库快速构建及闭环运营工具可至少节省 2/3 的知识库运营和维护人力,使冷启动和知识库更新时间缩短近 70%。

总结与展望

现阶段对话式 AI 技术应用的业界难题,主要是新场景中对话机器人的冷启动问题。上面介绍了我们在快速构建问答知识库上的工作,在一定程度上解决了冷启动问题,使冷启动和知识库更新时间缩短近 70%,但是仍然需要一定的人力在工具的辅助下进行知识库审核和构建。目前流行的基于提示学习 prompt 的小样本学习,可充分利用预训练模型在大量无监督数据集上学习到的丰富知识,进一步减少冷启动所需要的数据量和人力投入。

未来,中关村科金将利用现有的知识库快速构建技术,结合最新的小样本学习方法,进一步缩短对话式 AI 的部署周期,为企业的智能化转型和对话式 AI 的大规模快速落地提供有力的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/182601.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

程序员接单,宝藏好平台抄底攻略清单!五大平台精选。

前阵子”双十一“购物节狂欢促销,各种好货清单席卷而来。 程序员购不购物我不知道,但是这个兼职、接单清单相信你一定用得着。 搜罗海量信息,整理大量数据与评价,挖出了5个宝藏平台,绝对个个精选,保证量大…

Python函数式编程:让你的代码更优雅更简洁

概要 函数式编程(Functional Programming)是一种编程范式,它将计算视为函数的求值,并且避免使用可变状态和循环。 函数式编程强调的是函数的计算,而不是它的副作用。 在函数式编程中,函数是第一类公民&a…

IDEA设置方法注释模板

目录 一.打开设置:File—>Settings... 二.选择Live Templates—>点击右侧 "" 号—>选择Template Group... 三.输入组名称,建议取容易理解的名字,点击OK 四.选中创建好的组,再次点击 "" 号&#…

二十三、RestClient操作索引库

目录 例:利用JavaRestClient实现创建、删除索引库,判断索引库是否存在 1、编写mapping映射 2、初始化JavaRestClient (1)导入elasticsearch的依赖 (2)修改elasticsearch的版本 (3&#xf…

企业必看的大数据安全极速传输解决方案

在这个大数据时代,企业在享受大数据带来的便利同时,也面临着巨大的挑战,其中最主要的问题就是数据安全方面和传输方面,为了更好地满足企业大数据传输的需求,小编将深入分析企业对于大数据传输面临的挑战和风险以及大数…

飞翔的鸟游戏

一.准备工作 首先创建一个新的Java项目命名为“飞翔的鸟”,并在src中创建一个包命名为“com.qiku.bird",在这个包内分别创建4个类命名为“Bird”、“BirdGame”、“Column”、“Ground”,并向需要的图片素材导入到包内。 二.代码呈现 pa…

Speaker Verification,声纹验证详解——语音信号处理学习(九)

参考文献: Speaker Verification哔哩哔哩bilibili 2020 年 3月 新番 李宏毅 人类语言处理 独家笔记 声纹识别 - 16 - 知乎 (zhihu.com) (2) Meta Learning – Metric-based (1/3) - YouTube 如何理解等错误率(EER, Equal Error Rate)?请不要只给定义 - 知…

docker部署微服务

目录 docker操作命令 镜像操作命令 拉取镜像 导出镜像 删除镜像 加载镜像 推送镜像 部署 pom文件加上 在每个模块根目录加上DockerFile文件 项目根目录加上docker-compose.yml文件 打包,clean,package 服务器上新建文件夹 测试docker-compo…

C#中的迭代器和分部类

目录 一、迭代器 1.示例源码 2.生成效果: 二、分部类 1.示例源码 2.生成效果 迭代器在集合类中经常使用,而分部类则提供了一种将一个类分成多个类的方法,这对于有大量代码的类非常实用。 一、迭代器 迭代器是可以返回相同类型的值的有…

unreal 指定windows SDK

路径 &#xff1a; “C:\Users\Administrator\AppData\Roaming\Unreal Engine\UnrealBuildTool\BuildConfiguration.xml” 在Configuration中添加 <WindowsPlatform><WindowsSdkVersion>10.0.20348.0</WindowsSdkVersion></WindowsPlatform>示例&…

Android二维码扫描开源库 - BGAQRCode-Android

目录 ● 功能介绍 ● 常见问题 ● 效果图与示例 apk ● Gradle 依赖 ● 布局文件 ● 自定义属性说明 ● 接口说明 ● 下载源码 功能介绍 根据之前公司的产品需求&#xff0c;参考 barcodescanner 改的&#xff0c;希望能帮助到有生成二维码、扫描二维码、识别图片二维码等需求…

【Vue】插值表达式

作用&#xff1a;利用表达式进行插值渲染 语法&#xff1a;{ { 表达式 } } 目录 案例一&#xff1a; 案例二&#xff1a; 案例三&#xff1a; ​编辑 注意&#xff1a; 案例一&#xff1a; <!DOCTYPE html> <html lang"en"> <head><me…

mapTR环境配置和代码复现

MAPTR: STRUCTURED MODELING AND LEARNING FOR ONLINE VECTORIZED HD MAP CONSTRUCTION 论文 :https://arxiv.org/pdf/2208.14437.pdf 代码:https://github.com/hustvl/MapTR MapTR,是一个结构化的端到端框架,用于高效的在线矢量化高精地图构建。我们提出了一种基于统一…

Python实现交易策略评价指标-收益率

1.收益率的定义 收益率几乎是所有投资者都会关注的一个指标&#xff0c;收益率的高低决定了投资策略的赚钱能力&#xff0c;常见关于收益率的指标如下&#xff1a; 持有期收益率 持有期收益率 期末投资权益 − 期初投资权益 期初投资权益 持有期收益率 \frac {期末投资权益…

ELK企业级日志分析平台——ES集群监控

启用xpack认证 官网&#xff1a;https://www.elastic.co/guide/en/elasticsearch/reference/7.6/configuring-tls.html#node-certificates 在elk1上生成证书 [rootelk1 ~]# cd /usr/share/elasticsearch/[rootelk1 elasticsearch]# bin/elasticsearch-certutil ca[rootelk1 ela…

OpenAI 曾收到 AI 重大突破警告;半独立的 OpenAI 比与微软合并更好丨 RTE 开发者日报 Vol.91

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE &#xff08;Real Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

图解分库分表

中大型项目中&#xff0c;一旦遇到数据量比较大&#xff0c;小伙伴应该都知道就应该对数据进行拆分了。有垂直和水平两种。 垂直拆分比较简单&#xff0c;也就是本来一个数据库&#xff0c;数据量大之后&#xff0c;从业务角度进行拆分多个库。如下图&#xff0c;独立的拆分出…

自养号测评补单对亚马逊,美客多,国际站卖家有什么影响

做测评&#xff0c;补单。其本质也是增加真实用户浏览下单&#xff0c;得到平台规则的承认&#xff0c;让它给你更多曝光和排名&#xff0c;从而增加转化率。相信很多卖家都没做过测评&#xff0c;补单。只靠着产品优化&#xff0c;广告和催评等手段来提升店铺&#xff0c;但是…

暗物质探测器认知教学VR元宇宙平台打破传统束缚

“飞船正在上升&#xff0c;马上就冲出大气层了!”这是一位在1&#xff1a;1还原的神舟飞船返回舱内借助VR设备置身元宇宙世界&#xff0c;沉浸式体验升空全过程的游客兴奋地说道。不仅如此&#xff0c;在载人飞船训练期&#xff0c;元宇宙技术为航天员虚拟一个逼真的太空世界&…

Modbus RTU、Modbus 库函数

Modbus RTU 与 Modbus TCP 的区别 一般在工业场景中&#xff0c;使用 Modbus RTU 的场景更多一些&#xff0c;Modbus RTU 基于串行协议进行收发数据&#xff0c;包括 RS232/485 等工业总线协议。采用主从问答式&#xff08;master / slave&#xff09;通信。 与 Modbus TCP 不…